同位素稀释-超高效液相色谱-串联质谱法测定人血浆中氟康唑的浓度 点击下载
论文标题: 同位素稀释-超高效液相色谱-串联质谱法测定人血浆中氟康唑的浓度
英文标题:
中文摘要: 目的:建立测定人血浆中氟康唑浓度的方法。方法:血浆样品经乙腈沉淀蛋白后,以同位素氟康唑-d4为内标,采用超高效液相色谱-串联质谱法测定。色谱柱为ACQUITY UPLC BEH C18,流动相为0.1%甲酸溶液-乙腈(梯度洗脱),流速为0.3 mL/min,柱温为40 ℃,进样量为3 μL;采用电喷雾离子源,以多反应监测模式进行正离子扫描,用于定量分析的离子对分别为m/z 307.1→220.0(氟康唑)和m/z 311.1→223.0(内标)。结果:氟康唑血药浓度检测的线性范围为10~5 000 ng/mL(r=0.998 1),定量下限为10 ng/mL;日内、日间RSD均低于8%,准确度为95.8%~106.7%;提取回收率为97.3%~107.3%(RSD<5.0%,n=6),基质效应、稀释效应及残留效应均不影响待测物的定量分析。结论:该方法简便、快速、专属性强、准确度高,可用于氟康唑治疗药物监测及药动学研究。
英文摘要: OBJECTIVE: To establish a method for determination of fluconazole concentration in human plasma. METHODS: UPLC-MS/MS method was adopted to determine plasma after precipitated with acetonitrile. Using isotope fluconazole-d4 as internal standard, the determination was performed on ACQUITY UPLC BEH C18 column with mobile phase consisted of 0.1% formic acid-acetonitrile (gradient elution) at the flow rate of 0.3 mL/min. The column temperature was 40 ℃, and the sample size was 3 μL. ESI was used for positive ion scanning by multiple reaction monitoring mode. The ion pairs for quantitative analysis were m/z 307.1→220.0 (fluconazole) and m/z 311.1→223.0 (internal standard). RESULTS: The linear range of fluconazole was 10-5 000 ng/mL (r=0.998 1). The limits of quantitation was 10 ng/mL. RSDs of intra-day and inter-day were less than 8%; accuracy ranged 95.8%-106.7%. The extraction recovery ranged 97.3%-107.3% (RSD<5.0%, n=6), and matrix effect, dilution effect and residual effect didn’t influence quantitative analysis of the substance to be measured. CONCLUSIONS: The method is simple, rapid, specific and accurate, which can be used for therapeutic drug monitoring and pharmacokinetic study of fluconazole.
期刊: 2019年第30卷第2期
作者: 杨浩天,吴茵,宋浩静,邱志宏,董占军
英文作者: YANG Haotian,WU Yin,SONG Haojing,QIU Zhihong,DONG Zhanjun
关键字: 氟康唑;同位素内标;超高效液相色谱-串联质谱法;血药浓度;治疗药物监测
KEYWORDS: Fluconazole; Isotope internal standard; UPLC-MS/MS; Plasma concentration; Therapeutic drug monitoring
总下载数: 81次
本日下载数: 2次
本月下载数: 81次
文件大小: 619.60Kb

* 注:未经本站明确许可,任何网站不得非法盗链资源下载连接及抄袭本站原创内容资源!在此感谢您的支持与合作!