蒙药漏芦花的HPLC 指纹图谱研究^A

田 香*,王美丽,白玉霞#(内蒙古民族大学蒙医药学院,内蒙古 通辽 028300)

中图分类号 R917; R284.1 文献标志码 A 文章编号 1001-0408(2015)33-4690-03

DOI 10.6039/j.issn.1001-0408.2015.33.29

摘 要 目的:建立漏芦花的高效液相色谱(HPLC)指纹图谱。方法:采用 HPLC法。色谱柱为 Hypersil-ODS,流动相为 0.3%磷酸-乙腈(梯度洗脱),流速为 1.0 ml/min,检测波长为 220 nm,柱温为 30 ℃,进样量为 10 μl。以木犀草素为参照物,分析不同产地 17批漏芦花药材,采用《中药色谱指纹图谱相似度评价系统》(2004A版)软件进行相似度分析。结果:漏芦花有 11 个共有峰,17批药材的相似度≥0.900。经验证,漏芦花的指纹图谱与对照指纹图谱具有较好的一致性。结论:所建立的指纹图谱专属性强、方法稳定,可为漏芦花的鉴别和质量评价提供参考。

关键词 蒙药;漏芦花;高效液相色谱法;指纹图谱

Study on the HPLC Fingerprint Spectrum of Mongolian Medicine Rhaponticum uniflorum

TIAN Xiang, WANG Mei-li, BAI Yu-xia (College of Mongolian Medicine, Inner Mongolia University for the Nationalities, Inner Mongolia Tongliao 028300, China)

ABSTRACT OBJECTIVE: To establish HPLC fingerprint sectrum of *Rhaponticum uniflorum*. METHODS: HPLC was performed on the column of Hypersil-ODS with mobile phase of 0.3% phosphoric acid-acetonitrile (gradient elution) at flow rate of 1.0 ml/min, detection wavelength was 220 nm, column temperature was 30 °C and volume injection was 10 µl. The luteolin was reference, 17 batches of *R. uniflorum* from different production places was analyzed and similarity evaluation system for chromatographic fingerprint of TCM (2004 A edition) was adopted for the similarity analysis. RESULTS: There were totally 11 common peaks with similarity degree ≥ 0.900 of 17 batches. According to the verification, the fingerprint spectrum and reference fingerprint spectrum of *R. uniflorum* had good consistency. CONCLUSIONS: The established method is specific and stable, and can provide reference for the identification and quality control of *R. uniflorum*.

KEYWORDS Mongolian medicine; Rhaponticum uniflorum; HPLC; Fingerprint spectrum

蒙药漏芦花为菊科植物祁州漏芦 Rhaponticum uniflorum (L.) DC.的干燥花,蒙药名为洪古日朱勒,具有杀黏、止刺痛、清热、解毒、解表之功效。临床多用于肠刺痛、瘟热、白喉、麻疹、毒热、心热、炽热、血热、伤热等症的治疗[1-3]。漏芦花记载于《认药白晶鉴》、《内蒙古植物志》等文献[4],其中有效成分木犀草素具有消炎、抗过敏、抗肿瘤、抗菌、抗病毒等作用;芹菜素具有抗肿瘤、抗炎、降血压、舒张血管、抗焦虑、抗菌、抗病毒等作用[6]。经成分分析,初步确认漏芦花中含有黄酮、挥发油、植物甾醇、萜类、单糖等成分[6-9]。本课题组以漏芦花主要有效成分木犀草素为参照物,建立了蒙药漏芦花的高效液相色谱(HPLC)指纹图谱,并对不同来源的漏芦花药材进行了质量评价,不仅可以反映漏芦花中所含化学成分的情况,更能为全面控制漏芦花药材的质量提供依据。

1 材料

 Δ 基金项目:国家科技支撑计划项目(No.2012BAI28B01);内蒙古自治区高等学校科学研究项目(No.NJ10120)

*硕士研究生。研究方向:蒙药及其复方制剂质量标准。E-mail: 729021178@qq.com

#通信作者:教授,硕士生导师,博士。研究方向:蒙药及其制剂质量标准。电话:0475-8314242。 E-mail:byx6088@163.com

1.1 仪器

LC-10A型HPLC仪(包括二级管阵列检测器)、AW120型电子分析天平(日本岛津公司);KQ5200DB型超声波清洗器(昆山市超声仪器有限公司);HH-S26S型电热恒温水浴锅(上海跃进医疗机械厂)。

1.2 试剂

芹菜素对照品(批号:111901-201102,纯度≥99%)、木犀草素对照品(批号:111520-201104,纯度≥99%)均购于中国食品药品检定研究院;乙腈、甲醇为色谱纯,其余试剂均为分析纯,水为超纯水。

1.3 药材

17 批漏芦花均采集于2011年6月~2012年7月(见表1), 经内蒙古民族大学蒙医药学院吴香杰教授鉴定为真品。

2 方法与结果^[10]

2.1 色谱条件

色谱柱:Hypersil-ODS(300 mm×4.6 mm,5 μ m);流动相: 0.3%磷酸(A)-乙腈(B),梯度洗脱(0~10 min,98% → 87% A;10~30 min,87%→80%A;30~60 min,80%→74%A;60~100 min,74%→98%A;100~115 min,98%~100%A;115~

表1 漏芦花来源

Tab 1 Origin of R. uniflorum

No.	编号	产地				
1	S1	内蒙古通辽罕山				
2	S2	内蒙古通辽罕山				
3	S3	内蒙古呼和浩特市大青山				
4	S4	内蒙古兴安盟乌兰浩特前旗				
5	S5	内蒙古锡林郭勒盟东乌旗				
6	\$6	内蒙古锡林郭勒盟东乌旗				
7	S7	内蒙古通辽市蒙药厂				
8	\$8	内蒙古鄂尔多斯				
9	S9	内蒙古民族大学附属医院				
10	S10	内蒙古呼和浩特托县				
11	S11	内蒙古通阜新				
12	S12	安徽亳州				
13	S13	内蒙古呼伦贝尔东旗				
14	S14	内蒙古赤峰巴林右旗				
15	S15	内蒙古阿尔山				
16	S16	山西				
17	S17	河北				

120 min, 100% A); 流速: 1.0 ml/min; 检测波长: 220 nm; 柱温: 30 ℃;进样量:10 µl。

2.2 溶液的制备

2.2.1 混合对照品溶液 取芹菜素、木犀草素对照品各适量, 精密称定,分别用甲醇溶解并稀释,滤过,分别制成每1 ml含 0.53 mg 芹菜素、0.33 mg 木犀草素的单一对照品贮备液。取上 述芹菜素对照品贮备液 70 µl,用甲醇稀释制成每1 ml 含 74.2 ug的对照品溶液;取上述木犀草素对照品贮备液80 ul,用甲醇 稀释制成1 ml 含52.8 ug的对照品溶液;取上述两种对照品溶 液以1:1体积比混合,制成混合对照品溶液。

2.2.2 供试品溶液 取漏芦花适量,晒干,粉碎,过20目筛,取 药材粉末1.0g,精密称定,置圆底烧瓶中,精密加入甲醇 20 ml, 称定质量, 回流提取 30 min, 冷却至室温, 再次称定 质量,以甲醇补足减失的质量,摇匀,滤过,取续滤液,即得 供试品溶液。

2.3 方法学考察

2.3.1 精密度试验 取"2.2.1"项下混合对照品溶液适量,按 "2.1"项下色谱条件连续进样6次测定,记录相对保留时间和 峰面积。结果,各色谱峰相对保留时间的RSD<1.0%(n=6), 各色谱峰相对峰面积的RSD<2.0%(n=6),表明仪器精密度 良好。

2.3.2 稳定性试验 取"2.2.2"项下供试品(No.17)溶液适量, 分别于放置0、2、4、6、12、24 h时进样测定,记录相对保留时间 和峰面积。结果,各色谱峰相对保留时间的RSD<2.0%(n= 6),各色谱相对峰面积的RSD<3.0%(n=6),表明供试品溶液 在24 h内基本稳定。

2.3.3 重复性试验 精密称取同一批样品(No.17)适量,按 "2.2.2"项下方法制备供试品溶液,共6份,再按"2.1"项下色谱 条件进样测定,记录相对保留时间和峰面积。结果,各色谱峰 相对保留时间的RSD<1.0% (n=6),各色谱峰相对峰面积的 RSD < 2.0% (n=6),表明本方法重复性良好。

2.4 指纹图谱的建立及共有峰的指认

2.4.1 指纹图谱的建立 取17批漏芦花各适量,按"2.2.2"项 下方法制备供试品溶液,再按"2.1"项下色谱条件进样测定,得 漏芦花的HPLC特征指纹图谱,详见图1。

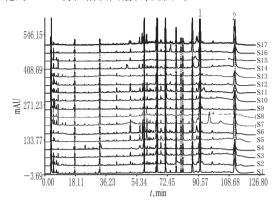


图 1 17 批漏芦花高效液相色谱叠加图

S1~S17.依次为供试品1~17;1.木犀草素;2.芹菜素

Fig 1 Overlapping HPLC chromatograms of 17 batches of R. uniflorum

S1-17. No.1-17 of samples; 1. luteolin; 2. apigenin

2.4.2 漏芦花对照图谱的生成 采用国家药典委员会颁布的 《中药色谱指纹图谱相似度评价系统》(2004A版)对17批漏芦 花进行对照图谱拟合。结果表明,17批漏芦花共有的特征峰 有11个,经对照,指认其中的10号峰为木犀草素(图1中峰号 1),定为参照峰,详见图2。

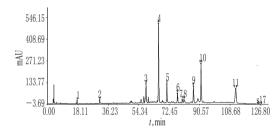


图2 17批漏芦花共有峰高效液相色谱图

Fig 2 Common peak HPLC chromatograph of 17 batches of R. uniflorum

2.4.3 相似度分析 采用国家药典委员会颁布的《中药色谱 指纹图谱相似度评价系统》(2004A版)对17批漏芦花的色谱 进行比较分析。结果,17批样品中11个共有峰占总峰面积的 比例均不低于90%。S1~S17的药材相似度分别为0.910、 0.979, 0.988, 0.901, 0.967, 0.961, 0.911, 0.954, 0.969, 0.900, 0.951、0.938、0.904、0.930、0.927、0.900、0.960,表明17批漏芦 花相似度良好。各共有峰的相对保留时间和相对峰面积的统 计结果见表2、表3。

3 讨论

漏芦花中主要含黄酮类成分,根据文献[10]报道,此类化合 物 HPLC 的分析多采用甲醇-酸或乙腈-酸作为流动相。因此 笔者比较了磷酸-甲醇与磷酸-乙腈体系下的分离效果。结果 表明,磷酸-乙腈作为流动进行相梯度洗脱时样品分离效果最 优。笔者又以二极管阵列检测器对检测波长进行了考察,分

表2 17批漏芦花共有峰相对保留时间

Tab 2 Relative retention time of common peaks of 17 batches of *R. uniflorum*

编号	峰号										
	1	2	3	4	5	6	7	8	9	10	11(s)
S1	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.78	0.82	1.00
S2	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.80	0.82	1.00
S3	0.16	0.28	0.53	0.59	0.64	0.69	0.72	0.73	0.77	0.82	1.00
S4	0.16	0.27	0.52	0.58	0.63	0.69	0.72	0.73	0.78	0.82	1.00
S5	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.78	0.82	1.00
S6	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.78	0.82	1.00
S7	0.16	0.28	0.52	0.59	0.63	0.69	0.71	0.72	0.79	0.81	1.00
S8	0.16	0.28	0.52	0.59	0.64	0.69	0.72	0.73	0.78	0.82	1.00
S9	0.16	0.28	0.52	0.59	0.63	0.69	0.71	0.72	0.77	0.82	1.00
S10	0.16	0.27	0.51	0.58	0.62	0.68	0.71	0.71	0.76	0.80	1.00
S11	0.16	0.27	0.52	0.58	0.63	0.68	0.71	0.72	0.76	0.81	1.00
S12	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.78	0.82	1.00
S13	0.15	0.27	0.51	0.58	0.62	0.68	0.70	0.71	0.75	0.80	1.00
S14	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.80	0.82	1.00
S15	0.16	0.28	0.53	0.60	0.64	0.70	0.72	0.73	0.80	0.82	1.00
S16	0.16	0.27	0.52	0.58	0.63	0.68	0.70	0.71	0.76	0.80	1.00
S17	0.16	0.27	0.53	0.60	0.64	0.69	0.72	0.73	0.78	0.82	1.00
RSD,%	1.52	1.70	1.36	1.49	1.13	1.17	1.00	1.10	1.90	0.98	0.00

表3 17批漏芦花共有峰相对峰面积

Tab 3 Relative peak areas of common peaks of 17 batches of R. uniflorum

编号	峰号										
	1	2	3	4	5	6	7	8	9	10	11(s)
S1	0.03	0.11	0.31	0.74	0.33	0.14	0.06	0.09	0.46	0.60	1.00
S2	0.07	0.16	0.36	1.60	1.36	0.23	0.06	0.14	0.14	0.14	1.00
S3	0.04	0.20	0.54	2.64	1.63	0.34	0.09	0.18	0.28	2.21	1.00
S4	0.08	0.27	1.76	5.77	0.39	0.81	0.22	0.41	0.51	3.46	1.00
S5	0.03	0.03	0.38	1.68	0.55	0.20	0.04	0.09	0.17	1.20	1.00
S6	0.05	0.08	0.69	0.61	0.64	0.29	0.09	0.13	0.64	1.60	1.00
S7	0.05	1.10	0.81	3.38	6.05	0.24	0.07	0.21	0.41	2.31	1.00
S8	0.09	0.05	0.22	2.19	0.69	0.22	0.08	0.14	0.08	1.80	1.00
S9	0.05	0.15	0.40	1.14	1.35	0.24	0.03	0.09	0.63	0.97	1.00
S10	0.10	0.38	0.97	2.61	0.88	0.24	0.08	0.22	0.55	1.54	1.00
S11	0.10	0.45	1.00	5.38	4.98	0.59	0.11	0.23	0.36	3.19	1.00
S12	0.06	0.14	0.43	1.27	0.52	0.17	0.25	0.14	0.65	0.94	1.00
S13	0.10	0.49	0.56	2.08	4.42	0.18	0.07	0.16	0.88	1.40	1.00
S14	0.03	0.01	0.46	1.12	0.29	0.15	0.04	0.11	0.16	1.89	1.00
S15	0.05	0.04	0.40	1.83	0.47	0.57	0.06	0.14	0.66	1.56	1.00
S16	0.06	0.34	1.11	2.82	0.41	0.27	0.20	0.32	2.86	1.77	1.00
S17	0.05	0.07	0.70	2.33	0.63	0.31	0.12	0.14	0.62	1.59	1.00
RSD,%	40.41	111.85	59.13	61.74	119.89	29.66	65.90	49.39	105.9	53.23	0.00

别设定220、242、254、340 nm。结果,在220 nm波长处各色谱峰均有较好吸收,吸收强度高,色谱信息较丰富、稳定,因此选择220 nm 作为检测波长。

经HPLC分析,回流提取方法结果较理想,因此笔者采用

回流提取方法。笔者又对甲醇、25%甲醇、50%甲醇、60%甲醇、75%甲醇、90%甲醇、乙醇、25%乙醇、50%乙醇、75%乙醇、90%乙醇、氯仿等不同提取溶剂进行了考察。结果表明,甲醇提取对漏芦花提取效果相对较好,出峰数目多,因此选择甲醇作提取溶剂。

17批漏芦花与共有模式对照指纹图谱的相似度均不低于 0.900,说明不同产地漏芦花的指纹图谱与对照指纹图谱具有 较好的一致性。但同时也应看到,各色谱峰的相对峰面积还 有一定的差异,因此在应用过程中,漏芦花药材来源和产地均应固定,这对保证产品质量的稳定具有重要意义。

综上所述,本研究所建立的指纹图谱专属性强、方法稳定,可为漏芦花的鉴别和质量评价提供参考。

参考文献

- [1] 中华人民共和国卫生部.中华人民共和国卫生部药品标准:蒙药分册[S].1985:54.
- [2] 国家中医药管理局《中华本草》编委会.中华本草:蒙药卷[M].上海:上海科技出版社,2004:400.
- [3] 朱晓伟,陈建平,布仁,等.蒙药漏芦花总皂苷提取工艺研究及其含量测定[J].中国中医药科技,2014,21(5):524.
- [4] 张静,鞠爱华,杜晓鹂,等.高效液相色谱法测定蒙药漏芦 花中绿原酸的含量研究[J].中药研究与实践,2012,26 (4):31.
- [5] 林宗涛,梁毅,刘淑娟,等.HPLC法测定北刘寄奴中木犀草素和芹菜素的含量[J].药物分析杂志,2011,31(9):
- [6] 包小妹,刘乐乐,罗素琴,等.蒙药漏芦花的化学成分研究 [J].中华中医药杂志,2012,27(7):1914.
- [7] 娜荷芽,王小虎,图雅,等.漏芦与漏芦花研究进展[J].內 蒙古医科大学学报,2013,35(3):241.
- [8] 娜贺雅,白玉霞.蒙药漏芦花的研究进展[J].内蒙古大学学报,2011,26(3):330.
- [9] 吴吉英,白玉霞,斯日棍其其格.蒙药漏芦花中黄酮类化合物的研究[J]. 天然产物研究与开发, 2014, 26(8):1225.
- [10] 白玉霞,通拉嘎.蒙药兰盆花HPLC 指纹图谱研究[J].中 国现代应用药学,2013,30(6):610.

(收稿日期:2014-12-29 修回日期:2015-05-12)

(编辑:张 静)

《中国药房》杂志——《化学文摘》(CA) 收录期刊, 欢迎投稿、订阅