# 市售栀子药材的质量标准研究

王 晓\*,黄 南(台州市第一人民医院,浙江台州 318020)

中图分类号 R927 文献标志码 A 文章编号 1001-0408(2016)27-3857-04

**DOI** 10.6039/j.issn.1001-0408.2016.27.38

摘 要 目的:建立市售栀子药材的质量标准。方法:测定药材的水分、总灰分和浸出物。采用高效液相色谱法测定药材中栀子苷、芦丁、西红花苷 I 和西红花苷 II 的含量:色谱柱为 Waters Xbridge -C<sub>18</sub>,流动相为乙腈-0.2%磷酸(梯度洗脱,栀子苷、芦丁)、甲醇-水(45:55,V/V,西红花苷 I、西红花苷 II),流速为 1.0 ml/min,检测波长为 256 nm(栀子苷、芦丁)、440 nm(西红花苷 I、西红花苷 II), 元红花苷 II), 柱温为 30 °C,进样量为 10 μl(栀子苷、芦丁)、5 μl(西红花苷 I、西红花苷 II)。结果:栀子药材的水分、总灰分和浸出物分别为 5.8% ~8.4%、3.7% ~5.9% 和 29.5% ~37.9%。栀子苷、芦丁、西红花苷 I 和西红花苷 II 检测质量浓度线性范围分别为 162.08~1 620.84 μg/ml(r=0.999 9)、2.07~20.72 μg/ml(r=0.999 9)、8.04~80.41 μg/ml(r=0.999 9)、1.05~10.53 μg/ml(r=0.999 9);精密度、稳定性、重复性试验的 RSD < 2%;加样回收率分别为 98.65% ~101.43% (RSD=1.09%,r=6)、97.97% ~101.83% (RSD=1.39%,r=6)、97.97% ~101.30% (RSD=1.36%,r=6)、98.49% ~103.04% (RSD=1.84%,r=6)。结论:该研究所建标准可用于市售栀子药材的质量控制。

关键词 栀子;质量控制;栀子苷;芦丁;西红花苷Ⅰ;西红花苷Ⅱ;高效液相色谱法

#### Study on the Quality Standard for Gardenia jasminoides Commercially Available

WANG Xiao, HUANG Nan (Taizhou First People's Hospital, Zhejiang Taizhou 318020, China)

ABSTRACT OBJECTIVE: To establish the quality standard for *Gardenia jasminoides*. METHODS: The moisture, total ash and extract were determined. HPLC was used for contents determination of geniposide, rutin, crocin I and crocin II: the column was Waters Xbridge-C<sub>18</sub> with mobile phase of acetonitrile-0.2% phosphoric acid (gradient elution, gardenia and rutin), methanol-water (45:55, V/V, crocin I), crocin II at a flow rate of 1.0 ml/min; detection wavelength was 256 nm for gardenia and rutin, 440 nm for crocin II; column temperature was 30 °C; injection volume was 10 µl for gardenia and rutin, 5 µl for crocin II, crocin II. RESULTS: The moisture total ash and ethanol-soluble extract of *G. jasminoides* were 5.8% -8.4% , 3.7% -5.9% and 29.5% -37.9%, respectively. The linear range was 162.08-1 620.84 µg/ml for geniposide  $(r=0.999\ 9)$ , 2.07-20.72 µg/ml for rutin  $(r=0.999\ 9)$ , 8.04-80.41 µg/ml for crocin I  $(r=0.999\ 9)$  and 1.05-10.53 µg/ml for crocin II  $(r=0.999\ 9)$ ; RSDs of precision, stability and reproducibility test were lower than 2%; recoveries were 99.33% -101.43% (RSD=1.09%, n=6), 97.97% -101.83% (RSD=1.39%, n=6), 97.97% -101.30% (RSD=1.36%, n=6) and 98.65% -103.04% (RSD=1.84%, n=6). CONCLUSIONS: The established standard can be used for the quality control of *G. jasminoides* commercially available.

KEYWORDS Gardenia jasminoides; Quality control; Geniposide; Rutin; Crocin I; Crocin II; HPLC

液不显绿色反应,而受试品显绿色,表明本方法可用于本制剂 中吐根的鉴别。

表1 加样回收率试验结果(n=9)

Tab 1 Results of recovery test (n=9)

|      |      |      | •      |        |      |
|------|------|------|--------|--------|------|
| 样品含  | 加入量, | 测得量, | 加样回收   | 平均加样回  | RSD, |
| 量,mg | mg   | mg   | 率,%    | 收率,%   | %    |
| 3.55 | 2.84 | 6.38 | 99.84  |        |      |
| 3.55 | 2.84 | 6.37 | 99.69  |        |      |
| 3.55 | 2.84 | 6.40 | 100.16 |        |      |
| 3.55 | 3.55 | 7.10 | 100.04 |        |      |
| 3.55 | 3.55 | 7.12 | 100.28 | 100.08 | 0.20 |
| 3.55 | 3.55 | 7.11 | 100.14 |        |      |
| 3.55 | 4.26 | 7.81 | 100.05 |        |      |
| 3.55 | 4.26 | 7.83 | 100.26 |        |      |
| 3.55 | 4.26 | 7.83 | 100.26 |        |      |

2015年版《中国药典》(二部)中氯化铵原料、氯化铵片皆是以硝酸银滴定法对其含量测定,但经反复试验发现,本制剂中的甘草流浸膏中的某成分可与银离子结合,使含量测定值

\*中药师。研究方向:中成药、中药材(饮片)质量控制。电话: 0576-4016903

偏高(约为120%)。故最终不将其列入质量标准中。

表 2 样品含量测定结果(n=3)

Tab 2 Results of content determination of samples (n=3)

| 样品批号     | 甘草酸铵含量,mg/ml | 平均值,mg/ml |
|----------|--------------|-----------|
| 20153161 | 3.55         |           |
| 20153162 | 3.57         | 3.55      |
| 20153163 | 3.56         |           |

综上所述,经优化和提高的标准可有效控制复方小儿止 咳口服溶液的质量。

## 参考文献

- [1] 国家药典委员会.中华人民共和国药典:一部[S].2015年版.北京:中国医药科技出版社,2010:399.
- [2] 巩伟,赵豫,赵庆华,等.十一味参龙口服液的质量标准研究[J].中国药房,2014,25(35):3 323.
- [3] 卫生部药政局.中国医院制剂规范:西药制剂[S].2版.北京:人民卫生出版社,1995:55.

(收稿日期:2015-09-14 修回日期:2015-11-08) (编辑:张 静) 栀子为茜草科植物栀子 Gardenia jasminoides Ellis 的干燥成熟果实,性味苦、寒,归心、肺、三焦经,具有内服泻火除烦、清热利湿、凉血解毒、外用消肿止痛等功效,主要用于热病心烦、湿热黄疸、血热吐衄、火毒疮疡、扭挫伤痛等症的治疗。现代研究表明,栀子有利胆、止血、镇静、降温、抗病原微生物、抗炎、降血压作用。市售栀子药材主要存在染色、掺杂伪品、增重、硫磺熏等质量问题,为对浙江省内流通的栀子药材进行综合评价,本研究抽取不同厂家生产的各批次市售栀子药材,采用2015年版《中国药典》方法对栀子的水分和总灰分进行测定,并增加醇溶性浸出物项目,同时新建高效液相色谱法(HPLC)测定栀子苷和芦丁以及西红花苷 I 和西红花苷 II 的含量。

#### 1 材料

#### 1.1 仪器

1260型HPLC仪,包括二极管阵列检测器(美国Agilent公司);恒温水浴锅(上海梅香仪器有限公司);UNE400型自然对流烘箱(德国Memmert公司);DHG-9031A型电热恒温干燥箱、SXL-1008型程控箱式电炉(上海精宏实验设备有限公司);XS105DU型电子天平(瑞士Mettler-Toledo公司);DL-360D型智能超声波清洗器(上海之信仪器有限公司)。

#### 1.2 试药

栀子苷对照品(批号:110749-201316,纯度:97.5%)、芦丁对照品(批号:100080-200707,纯度:92.5%)、西红花苷 I 对照品(批号:111588-201202,纯度:91.1%)、西红花苷 II 对照品(批号:111589-201304,纯度:92.4%)均购自中国食品药品检定研究院;甲醇、乙腈、磷酸均为色谱纯、其余试剂均为分析纯,水为纯化水。

#### 1.3 药材

栀子药材(见表1)经笔者鉴定为真品。

表 1 栀子药材来源

Tab 1 Source of G. jasminoides

| 编号 | 批号         | 产地 | 编号 | 批号       | 产地 |
|----|------------|----|----|----------|----|
| 1  | 141209     | 浙江 | 9  | 1501027  | 浙江 |
| 2  | 141201     | 浙江 | 10 | 1504093  | 浙江 |
| 3  | 1410112    | 湖北 | 11 | 20140920 | 浙江 |
| 4  | 13112601   | 浙江 | 12 | 150225   | 浙江 |
| 5  | 150202     | 浙江 | 13 | 140901   | 安徽 |
| 6  | 20130131   | 安徽 | 14 | 150142   | 江西 |
| 7  | 1407007    | 江西 | 15 | 141001   | 河北 |
| 8  | 1407013052 | 江西 | 16 | 1412083  | 江西 |

## 2 方法与结果

## 2.1 栀子药材检查

- 2.1.1 水分测定<sup>图</sup> 取各批样品  $2\sim4$  g,平行 2 份,精密称定,按 2015 年版《中国药典》(四部)"水分测定法第一法"项下方法测定样品水分,结果见表 2 。
- 2.1.2 总灰分测定 取各批样品约2g,平行2份,精密称定,按2015年版《中国药典》(四部)"灰分测定法"项下方法测定样品总灰分,结果见表2。
- 2.1.3 浸出物测定 取各批样品  $2\sim4$  g,平行 2 份,精密称定,按 2015 年版《中国药典》(四部)"浸出物测定法"项下方法测定样品浸出物,结果见表 2 。

### 2.2 栀子苷和芦丁含量测定

2.2.1 色谱条件 色谱柱: Waters Xbridge C<sub>18</sub>(250 mm×4.6 mm, 5 μm); 流动相: 乙腈(A)-0.2%磷酸(B), 梯度洗脱(0~12 min, 11%→14% A; 12~30 min, 14%→16% A); 流速; 1.0 ml/min;

检测波长: 256 nm;柱温: 30 ℃;进样量: 10 μl。

表 2 样品水分、总灰分、浸出物和有效成分含量测定结果  $(\mathbf{n}=2,\%)$ 

Tab 2 Results of moisture, total ash, extract and contents of effective constitents (n=2, %)

| of effective constitutions (i. 2, 70) |     |     |      |     |       |        |       |       |
|---------------------------------------|-----|-----|------|-----|-------|--------|-------|-------|
| 编号                                    | 水分  | 总灰分 | 浸出物  | 栀子苷 | 芦丁    | 西红花苷 I | 西红花苷Ⅱ | 总西红花苷 |
| 1                                     | 5.8 | 4.1 | 34.9 | 7.0 | 0.041 | 0.85   | 0.10  | 0.95  |
| 2                                     | 7.8 | 4.8 | 36.6 | 7.8 | 0.049 | 0.95   | 0.19  | 1.14  |
| 3                                     | 6.8 | 4.4 | 36.8 | 7.5 | 0.038 | 0.86   | 0.09  | 0.95  |
| 4                                     | 6.4 | 5.9 | 32.9 | 6.0 | 0.033 | 0.76   | 0.15  | 0.91  |
| 5                                     | 7.1 | 4.8 | 37.9 | 6.8 | 0.045 | 1.05   | 0.23  | 1.28  |
| 6                                     | 6.8 | 5.7 | 36.6 | 4.8 | 0.065 | 0.78   | 0.15  | 0.93  |
| 7                                     | 6.9 | 5.7 | 37.4 | 5.5 | 0.051 | 0.90   | 0.12  | 1.02  |
| 8                                     | 7.9 | 5.7 | 33.6 | 5.7 | 0.030 | 0.68   | 0.09  | 0.77  |
| 9                                     | 6.9 | 4.6 | 30.0 | 5.9 | 0.070 | 1.26   | 0.12  | 1.38  |
| 10                                    | 7.7 | 5.3 | 30.7 | 4.7 | 0.065 | 0.69   | 0.07  | 0.76  |
| 11                                    | 8.4 | 5.2 | 29.9 | 6.8 | 0.035 | 0.48   | 0.05  | 0.53  |
| 12                                    | 6.1 | 5.0 | 34.4 | 7.3 | 0.068 | 1.26   | 0.19  | 1.45  |
| 13                                    | 8.4 | 4.9 | 29.5 | 5.9 | 0.018 | 0.67   | 0.09  | 0.76  |
| 14                                    | 7.0 | 3.7 | 29.7 | 8.4 | 0.048 | 1.01   | 0.12  | 1.13  |
| 15                                    | 7.4 | 5.1 | 29.6 | 5.9 | 0.036 | 0.69   | 0.08  | 0.77  |
| 16                                    | 8.2 | 4.7 | 30.0 | 8.1 | 0.052 | 0.78   | 0.22  | 1.00  |
| 平均                                    | 7.2 | 5.0 | 33.2 | 6.5 | 0.047 | 0.85   | 0.13  | 0.98  |

2.2.2 对照品溶液的制备、精密称取栀子苷、芦丁对照品适量,分别各置于15 ml量瓶中,加50%甲醇定容,摇匀、制成单一对照品溶液。分别吸取上述单一对照品溶液适量,置于同一量瓶中,加50%甲醇定容,制成栀子苷、芦丁质量浓度分别为1620.84、20.72 μg/ml的混合对照品溶液。

2.2.3 供试品溶液的制备 精密称取样品粉末(过4号筛)0.5 g,置于具塞锥形瓶中,加50%甲醇25 ml,称定质量,超声(功率.250 W,频率:40 kHz,下同)处理0.5 h,取出放冷,以50%甲醇补足减失的质量,摇匀,用0.45 μm 微孔滤膜滤过,取续滤液,即得。

2.2.4 系统适用性试验 取"2.2.2""2.2.3"项下对照品溶液、供试品溶液适量,按"2.2.1"项下色谱条件进样测定,记录色谱,详见图1。结果,理论板数以栀子苷和芦丁峰计均>20000;分离度>1.5,各成分基线分离良好。

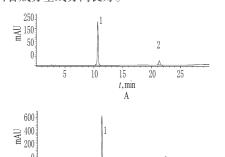



图1 栀子苷、芦丁的高效液相色谱图 A.对照品;B.供试品;1.栀子苷;2.芦丁

 $t, \min$ 

20

10

Fig 1 HPLC chromatograms of gardenia and rutin A. reference substance; B. test sample; 1.geniposide; 2.rutin

2.2.5 线性关系考察 精密量取"2.2.2"项下混合对照品溶液 1、2、4、6、8、10 ml,分别置于10 ml量瓶中,加50%甲醇定容,制成系列对照品溶液。精密量取上述系列对照品溶液各10 μl,按"2.2.1"项下色谱条件进样测定,记录峰面积。以栀子苷、芦

丁质量浓度 $(x,\mu g/m l)$ 为横坐标、峰面积(y)为纵坐标进行线性回归,得回归方程分别为y=6.7666x+19.1956(r=0.9999)、y=18.9960x-3.4504(r=0.9999)。结果表明,栀子苷、芦丁检测质量浓度线性范围分别为162.08~1620.84、2.07~20.72  $\mu g/m l$ 。

2.2.6 精密度试验 取"2.2.2"项下对照品溶液适量,按 "2.2.1"项下色谱条件连续进样测定6次,记录峰面积。结果, 栀子苷、芦丁峰面积的RSD分别为0.46%、0.78%(n=6),表明 仪器精密度良好。

2.2.7 稳定性试验 取"2.2.3"项下供试品溶液(编号: 141209)适量,分别于室温下放置0.4.8.12.24.36 h 时按"2.2.1"项下色谱条件进样测定,记录峰面积。结果,栀子苷、芦丁峰面积的RSD分别为0.79%.1.18%.(n=6),表明供试品溶液在36 h内基本稳定。

2.2.8 重复性试验 精密称取同一批样品(编号:141209)适量,按"2.2.3"项下方法制备供试品溶液,共6份,再按"2.2.1"项下色谱条件进样测定,记录峰面积。结果,栀子苷、芦丁峰面积的RSD分别为 0.98%、1.24% (n=6),表明本方法重复性良好。

2.2.9 加样回收率试验 取已知含量样品(编号:141209)适量,共6份,分别加入一定质量的栀子苷、芦丁对照品,按"2.2.3"项下方法制备供试品溶液,再按"2.2.1"项下色谱条件进样测定,记录峰面积并计算加样回收率,结果见表3。

表3 加样回收率试验结果 (n=6) Tab 3 Results of recovery test (n=6)

|            | 140     | o itest  | 1113 01 1 0 | covery   | CSCIN  | '      |      |
|------------|---------|----------|-------------|----------|--------|--------|------|
| 待測         | 称样      | 样品含      | 加入量,        | 测得量,     | 加样回收   | 平均加样   | RSD, |
| 成分         | 量,g     | 量,mg     | mg          | mg       | 率,%    | 回收率,%  | %    |
| 栀子苷        | 0.251 2 | 11.363 5 | 11.387 4    | 22.713 2 | 99.67  | 100.09 | 1.09 |
|            | 0.250 5 | 11.331 8 | 11.387 4    | 22.862 2 | 101.26 |        |      |
|            | 0.251 8 | 11.390 7 | 11.387 4    | 22,701 5 | 99.33  |        |      |
|            | 0.249 4 | 11.282 1 | 11.387.4    | 22.693 2 | 100.21 |        |      |
| _          | 0.253 3 | 11.458 5 | 11.387 4    | 23.008 3 | 101.43 |        |      |
| - <b>1</b> | 0.248 6 | 11.245 9 | 11.387 4    | 22.479 2 | 98.65  |        |      |
| 芦丁         | 0.251 2 | 0.160 9  | 0.161 9     | 0.322 0  | 99.51  | 99.40  | 1.39 |
|            | 0.250 5 | 0.160 5  | 0.161 9     | 0.320 2  | 98.67  |        |      |
|            | 0.2518  | 0.161 3  | 0.161 9     | 0.3199   | 97.97  |        |      |
|            | 0.249 4 | 0.159 7  | 0.161 9     | 0.321 5  | 99.91  |        |      |
|            | 0.253 3 | 0.162 2  | 0.161 9     | 0.321 7  | 98.49  |        |      |
|            | 0.248 6 | 0.159 2  | 0.161 9     | 0.324 1  | 101.83 |        |      |
| 西红花苷 I     | 0.0511  | 0.489 3  | 0.482 5     | 0.973 2  | 100.30 | 99.44  | 1.36 |
|            | 0.0508  | 0.486 4  | 0.482 5     | 0.9594   | 98.03  |        |      |
|            | 0.052 1 | 0.498 8  | 0.482 5     | 0.982 1  | 100.16 |        |      |
|            | 0.049 8 | 0.476 8  | 0.482 5     | 0.965 6  | 101.30 |        |      |
|            | 0.050 1 | 0.479 7  | 0.482 5     | 0.9568   | 98.88  |        |      |
|            | 0.051 5 | 0.493 1  | 0.482 5     | 0.965 8  | 97.97  |        |      |
| 西红花苷Ⅱ      | 0.051 1 | 0.058 1  | 0.057 4     | 0.115 9  | 100.64 | 100.98 | 1.84 |
|            | 0.050 8 | 0.057 8  | 0.057 4     | 0.116 5  | 102.28 |        |      |
|            | 0.052 1 | 0.059 3  | 0.057 4     | 0.115 8  | 98.49  |        |      |
|            | 0.049 8 | 0.056 7  | 0.057 4     | 0.115 8  | 103.04 |        |      |
|            | 0.050 1 | 0.057 0  | 0.057 4     | 0.115 7  | 102.28 |        |      |
|            |         |          |             |          |        |        |      |
|            | 0.051 5 | 0.058 6  | 0.057 4     | 0.115 5  | 99.15  |        |      |

2.2.10 样品中栀子苷、芦丁含量测定 取3批样品各适量,分别按"2.2.3"项下方法制备供试品溶液,再按"2.2.1"项下色谱条件进样测定,计算样品中栀子苷、芦丁的含量,结果见表2。

## 2.3 西红花苷 Ⅰ 和西红花苷 Ⅱ 含量测定

2.3.1 色谱条件 色谱柱: Waters Xbridge C₁s(250 mm×4.6 mm,5 μm);流动相:甲醇-水(45:55, V/V);流速:1.0 ml/min;检测波长:440 nm;柱温:30 ℃;进样量:5 μl。

2.3.2 对照品溶液的制备 精密称取西红花苷 I、西红花苷 II 对照品适量,分别各置于25 ml量瓶中,加50%乙醇定容,摇匀,制成单一对照品溶液。分别量取上述单一对照品溶液适量,置于同一量瓶中,加50%乙醇定容,制成西红花苷 I、西红花苷 II 质量浓度分别为80.41、10.53 μg/ml 的混合对照品溶液。2.3.3 供试品溶液的制备 精密称取样品粉末(过4号筛)0.1 g,置于50 ml 棕色量瓶中,加50%乙醇适量,置冰浴中超声处理20 min,放至室温,加稀乙醇补足质量,摇匀,用0.45 μm微孔滤膜滤过,取续滤液,即得。

2.3.4 系统适用性试验 取"2.3.2""2.3.3"项下对照品溶液、供试品溶液适量,按"2.3.1"项下色谱条件进样测定,记录色谱,详见图2。结果,理论板数以西红花苷 I、西红花苷 II 峰计均>5000;分离度>1.5,各成分基线分离良好。

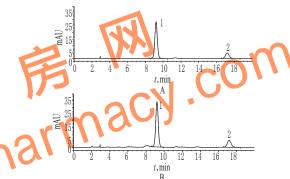



图 2 西红花苷 I、西红花苷 II 的高效液相色谱图 A.对照品;B供试品;1.西红花苷 I;2.西红花苷 II

Fig 2 HPLC chromatograms of crocin I and crocin II

A. reference substance; B. test sample; 1.crocin I ; 2.crocin II

2.3.5 线性关系考察 精密量取"2.3.2"项下混合对照品溶液 1,2,4,6,8,10 ml,分别置于 10 ml 量瓶中,加 50% 乙醇定容,制成系列对照品溶液。精密量取上述系列对照品溶液各 5 μl,按"2.3.1"项下色谱条件进样测定,记录峰面积。以西红花苷  $\mathbf{I}$ 、西红花苷  $\mathbf{II}$  质量浓度 $(x,\mu g/m l)$  为横坐标、峰面积(y) 为纵坐标进行线性回归,得回归方程分别为y=26.193 3x-5.218 7 (r=0.999 9)、y=28.928 6x+1.798 9 (r=0.999 9)。结果表明,西红花苷  $\mathbf{I}$ 、西红花苷  $\mathbf{II}$  检测质量浓度线性范围为  $8.04\sim80.41,1.05\sim10.53$   $\mu g/m l$ 。

2.3.6 精密度试验 取"2.3.2"项下对照品溶液适量,按"2.3.1"项下色谱条件连续进样测定6次,记录峰面积。结果,西红花苷 I、西红花苷 I 峰面积的RSD分别为0.53%、0.89% (n=6),表明仪器精密度良好。

2.3.7 稳定性试验 取"2.3.3"项下供试品溶液(编号: 141209)适量,分别于室温下放置 0.4.8.12.24.36 h 时按"2.3.1"项下色谱条件进样测定,记录峰面积。结果,西红花苷 I、西红花苷 I 峰面积的 RSD 分别为 0.98% 和 1.26% (n=6),表明供试品溶液在 36 h 内基本稳定。

2.3.8 重复性试验 精密称取同一批样品(编号:141209)适

量,按"2.3.3"项下方法制备供试品溶液,共6份,再按"2.3.1"项下色谱条件进样测定,记录峰面积。结果,西红花苷 I、西红花苷 I 峰面积的RSD分别为0.86%、1.35% (n=6),表明本方法重复性良好。

2.3.9 加样回收率试验 取已知含量样品(编号:141209)适量,共6份,分别加入一定质量的西红花苷 I、西红花苷 II 对照品,按"2.3.3"项下方法制备供试品溶液,再按"2.3.1"项下色谱条件进样测定,记录峰面积并计算加样回收率,结果见表3。2.3.10 样品中西红花苷 I、西红花苷 II 含量测定 取 3 批样品各适量,分别按"2.3.3"项下方法制备供试品溶液,再按"2.3.1"项下色谱条件进样测定,计算样品中西红花苷 I、西红

#### 3 讨论

花苷Ⅱ的含量,结果见表2。

栀子中含有大量的环烯醚萜类化合物,同时还存在一些有机酸、香豆素、藏红花素、黄酮、皂苷、挥发油、木脂素、多糖及其他类化合物(+5),目前研究较多的为栀子苷和藏红花素(6),关于黄酮类成分的研究则相对较少。黄酮类化合物具有抗炎、抗菌、抗病毒、抗肿瘤、降血脂和抗氧化自由基等多种药理活性(7-8),与栀子的现代药理作用相符,对其进行研究具有一定的现实意义。故本研究在测定栀子苷的同时对芦丁的含量进行了测定,并在此基础上对西红花苷 I 和西红花苷 II 的含量进行考察(9-10)。此外,本研究在2015年版《中国药典》栀子质量标准的基础上,增加了醇溶性浸出物项,以期更有效、更全面地控制该药材的质量。

经优选,结果显示采用超声提取法,以50% 甲醇为提取溶剂对栀子中栀子苷和芦丁的提取效果最好,以5% 乙醇为提取溶剂对栀子中西红花苷 I 和西红花苷 II 的提取效果最好。经二极管阵列检测器扫描,发现栀子苷的最大吸收波长为239 nm,芦丁的最大吸收波长为256 nm 和354 nm,考虑到栀子中芦丁含量较低,且在256 nm 时栀子苷的响应仍较高,故选用256 nm 作为检测波长以同时测定上述两种成分。西红花苷 I 和西红花苷 II 的最大吸收波长均在440 nm 处,故选用440 nm 作为检测波长同时测定上述两种成分。

测定结果显示, 栀子药材的水分、总灰分和醇溶性浸出物分别为  $5.8\% \sim 8.4\%$ 、 $3.7\% \sim 5.9\%$  和  $29.5\% \sim 37.9\%$ 。栀子

苷、芦丁、西红花苷 I 和西红花苷 II 的含量分别为 4.7%~8.4%、0.018%~0.070%、0.48%~1.26%和0.05%~0.23%,总西红花苷 (西红花苷 II 和西红花苷 II 之和)含量为 0.53%~1.45%。2015年版《中国药典》中栀子含量测定项下规定栀子苷的含量限度是 1.8%,由本研究测定结果可见,16 批栀子药材中含量最低的亦可达 4.7%,高于限度的 2倍,且各批次差异相对较小,故可相应提高标准;相对而言,栀子中芦丁的含量差异较大,且与栀子苷的含量不成比例,故其可以作为栀子药材质量控制的辅助性指标。综上所述,本研究所建标准可用于市售栀子药材的质量控制。

### 参考文献

- [1] 国家药典委员会.中华人民共和国药典:一部[S]. 2015年版.北京:中国医药科技出版社,2015:248.
- [2] 王恩里,董方,姚景春.栀子苷药理学和毒理学研究进展 [J].中国药房,2015,26(19):2730.
- [3] 国家药典委员会.中华人民共和国药典:四部[S].2015年版.北京:中国医药科技出版社,2015:103、202、204.
- [4] 梅蕾蕾, 胡晓. 栀子中藏花素的药理学和药动学研究进展 [J]. 中国临床药理学与治疗学, 2013, 18(7): 837.
- [5] 唐娜娜,张静.药用栀子化学成分研究[J].中国药师, 2014,17(3):381.
- [6] 陈阳,赵璨,张浩,等.栀子黄OD值、色价与西红花苷和栀子苷的相关性研究[J].食品科技,2010,35(5):262.
- [7] 陈白灵.黄酮类化合物的药理活性研究新进展[J].海南医学,2012,23(9):119.
- [8] 醉梅,李炳奇,王自军,等.栀子中总黄酮和多糖的微波提取与含量测定[J].中国现代应用药学杂志,2006,23(5):
- [9] 石凤鸣,王文君,陈维,等.栀子指纹图谱及不同生长期西 红花苷和栀子苷含量的研究[J].时珍国医国药,2011,22 (8):1874.
- [10] 罗光明,陈岩,李霞,等.不同居群品系栀子中栀子苷和西 红花苷 I 含量的比较研究[J].中药材,2010,33(9):1376.

(收稿日期:2015-09-07 修回日期:2015-10-24)

(编辑:张 静)

## 国家卫生计生委副主任马晓伟赴河南省调研"新农合"异地结报工作

本刊讯 2016年9月1日,国家卫生计生委副主任马晓伟 赴河南省专题调研"新农合"工作。在河南省人民医院,马晓 伟详细了解了"新农合"患者异地就医结报的工作流程;在收费 结算窗口,与正在结算报销的"参合"农民进行了交流,了解 "参合"群众对"新农合"的感受和建议;在"新农合"办公室,听 取审核人员对智能审核系统的介绍;并召开座谈会,听取了河 南省卫生计生委关于"新农合"工作的全面汇报。河南省人民 医院、河南省"新农合"管理中心,中国平安保险公司、中国人 寿保险公司具体汇报了有关工作。

马晓伟对河南省"'新农合'和大病保险"的"一站式结报" 工作给予高度肯定。他指出,河南省卫生计生委和各级卫生 部门对"新农合"工作高度重视,工作扎实有效,创造了很多好的经验和做法,群众实实在在受益。同时,在大病保险、商业保险经办,支付方式改革等方面创造了很好的经验。下一步,要认真学习、深刻领会全国卫生与健康大会精神,按照总书记提出的卫生与健康工作方针,贯彻落实好大会提出的各项任务。开展"新农合"异地就医结报工作,是党中央、国务院关心民生、心系群众的体现,时间紧、任务重。河南省前期在省内异地结报方面已经做了很好的探索,打下了很好的基础。下一步,要抓试点,求突破,补短板,争取在全国率先实现跨省份异地结报,探索支付方式改革,为实现健康中国目标作出新的贡献。