多指标-正交试验优化沙棘叶和沙棘籽中黄酮的提取工艺△

惠人杰^{1*},冯 静¹,蔺默含¹,冯柏年^{1,2#}(1.江南大学药学院,江苏 无锡 214122;2.江苏艾凡生物医药有限公司, 江苏 无锡 214122)

中图分类号 R284.2 文献标志码 A 文章编号 1001-0408(2017)34-4856-04 **DOI** 10.6039/j.issn.1001-0408.2017.34.27

摘 要 目的: 优化沙棘叶和沙棘籽中黄酮的提取工艺。方法: 以 6 种黄酮苷元即儿茶素、芦丁、杨梅素、槲皮素、山柰酚、异鼠李素的提取率总和为指标,以乙醇体积分数、提取时间、提取次数、料液比为考察因素,采用 $L_{\rm o}(3^4)$ 表设计正交试验,分别优化沙棘叶和沙棘籽中黄酮的提取工艺,并进行验证试验。结果: 沙棘叶中黄酮的最优提取工艺为乙醇体积分数 70%、提取 3%、每次提取 $2.0\,h$ 、料液比 1:16; 沙棘籽中黄酮的最优提取工艺为乙醇体积分数 50%、提取 3%、每次提取 $1.5\,h$ 、料液比 1:24; 验证试验中, 沙棘叶和沙棘籽中6种黄酮苷元的提取率总和分别为 56.4、 $15.4\,mg/g(RSD分别为 <math>1.4\%$ 、3.4%, n=3)。 结论: 优化后的提取工艺方法简便、稳定、可行, 可用于沙棘叶和沙棘籽中黄酮成分的提取。

关键词 沙棘叶;沙棘籽;正交试验;提取工艺;黄酮苷元

Optimization of Extraction Technology for Flavonoids in Leaves and Seeds of *Hippophae rhamnoides* by Multiindex-Orthogonal Test

HUI Renjie¹, FENG Jing¹, LIN Mohan¹, FENG Bainian^{1, 2} (1.School of Pharmacy, Jiangnan University, Jiangsu Wuxi 214122, China; 2.Jiangsu Alpha Biopharmaceuticals Co. Ltd., Jiangsu Wuxi 214122, China)

ABSTRACT OBJECTIVE: To optimize the extraction technology for flavonoids in leaves and seeds of *Hippophae rhamnoides*. METHODS: Using the total extraction rate of 6 flavonoid aglycones (catechins, rutin, myricetin, quercetin, kaempferol, isorhamnetin) as index, ethanol volume fraction, extraction time, extraction times, material-lipid ratio as investigation indexes, $L_9(3^4)$ orthogonal test was designed to optimize the extraction technology of flavonoids in leaves and seeds of *H. rhamnoides*, and verification test was carried out. RESULTS: The optimum extraction technology for flavonoids in leaves of *H. rhamnoides* was ethanol volume fraction of 70%, extracting for 3 times with material-lipid ratio of 1:16, and 2.0 h each time; and that of seeds was ethanol volume fraction of 50%, extracting for 3 times with material-lipid ratio of 1:24, and 1.5 h each time. In verification test, the total extraction rate of 6 flavonoid aglycones was 56.4 mg/g in the leaves (RSD=1.4%, n=3) and 15.4 mg/g in the seeds (RSD=3.4%, n=3). CONCLUSIONS: Optimized extraction technology is simple, stable, feasible, and can be used for extracting the flavonoids in leaves and seeds of *H. rhamnoides*.

KEY WORDS Leaves of *Hippophae rhamnoides*; Seeds of *Hippophae rhamnoides*; Orthogonal test; Extraction technology; Flavonoid aglycone

- [1] 江苏新医学院.中药大辞典:上册[M].上海:上海科学技术出版社,1985:221.
- [2] 李秋怡,干国平,刘焱文.川芎的化学成分及药理研究进展[J].时珍国医国药,2006,17(7):1298-1299.
- [3] 陶云海.天麻药理研究新进展[J].中国中药杂志,2008,33 (1):108-110.
- [4] 于颖, 樊光辉. 天麻素的临床应用研究进展[J]. 中西医结合心脑血管病杂志, 2012, 10(9): 1117-1118.
- [5] 刘旭,徐江平,程艳芹,等.基于谱效关系表达的中药川芎

 Δ 基金项目:江苏省自然科学基金青年基金项目(No.BK20140136); 江苏高校品牌专业建设工程资助项目(No.PPZY2015B146)

*副教授,博士。研究方向:药物分析。E-mail:huirenjie@jiang-nan.edu.cn

#通信作者:教授,博士生导师,博士。研究方向:药物化学、药物分析。E-mail:fengbainian@jiangnan.edu.cn

- 药效物质筛选[J].中国医院药学杂志,2014,34(23):1969-1973.
- [6] 肖庆华.中药药对大全[M].北京:中国中医药出版社, 1996:253.
- [7] 曹建华,李光辉,张敏.超声波辅助提取蓝莓总黄酮的工艺优化[J].中国药房,2015,26(31);4426-4428.
- [8] 廖维良,赵美顺,杨红.超声波辅助提取技术研究进展[J]. 广东药学院学报,2012,28(3):347-349.
- [9] 马亚琴,叶兴乾,吴厚玖,等.超声波辅助提取植物活性成分的研究进展[J].食品科学,2010,31(21):459-462.
- [10] 杨广德,梁明金,贺浪冲,等.川芎中阿魏酸的提取方法研究[J].中成药,2002,24(6):418-420.
- [11] 郑秀艳,邓青芳,陈国华,等.天麻中天麻素的提取工艺优化[J].贵州农业科学,2013,41(12):163-166.

(收稿日期:2017-05-09 修回日期:2017-08-29) (编辑:刘 萍)

沙棘(Hippophae rhamnoides Linn.)为胡颓子科酸刺 属的灌木或小乔木,别名醋柳山,具有多种营养保健作 用,可作为营养食品、药物和护肤品四。沙棘黄酮是沙棘 中的重要活性物质,具有抗心肌缺血[3]、降糖[4]、抗肿瘤[5]、 抗菌®、消炎四等作用。自1977年起,沙棘便被列入了 《中国药典》,此后在历版药典中均有记载图。除了被广 泛关注的沙棘果之外,沙棘叶、沙棘籽等沙棘的其他部 位也富含多种黄酮成分,具有相当高的药用价值图。深 入开发沙棘叶和沙棘籽的经济价值,尤其是其药用价 值,需要对沙棘的药用成分进行更为精准有效的提取分 析。在现有的沙棘黄酮提取工艺研究中,多以总黄酮为 单一考察指标对提取方法的效率进行评价,不仅缺乏针 对单一黄酮成分的分析及提取工艺研究,也缺乏针对不 同提取部位的工艺优化。本研究以沙棘叶和沙棘籽为 样本,以沙棘中6种主要黄酮苷元的提取率总和为指标, 设计正交试验,优化其活性成分的提取工艺。

1 材料

1.1 仪器

LC-20AT高效液相色谱仪(日本岛津公司);ACM-L超细粉碎机(青岛微纳粉体机械有限公司);DZF-08真空干燥箱(上海博泰实验设备有限公司);DT-200B电子天平(常熟市佳衡天平仪器有限公司);HH-4数显恒温水浴锅(上海豫康科教仪器设备有限公司);BSA124S精密电子天平[赛多利斯科学仪器(北京)有限公司];Lyo-Quest-85真空冻干机(西班牙泰事达科技有限公司);RE-52A旋转蒸发器(郑州科泰实验设备有限公司);PURIST UV超纯水系统(上海乐枫生物科技有限公司)。

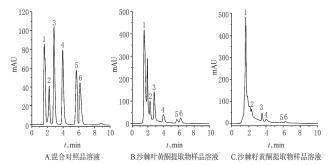
沙棘叶、沙棘籽(新疆金之源生物科技有限责任公司,采摘日期为2016年4月,鉴定人为无锡市药品安全检验检测中心副主任中药师金卓);儿茶素(批号: H1603040,纯度:>98%)、杨梅素(批号: L1623059,纯度:>98%)、山柰酚(批号: B1704013,纯度:>98%)、异鼠李素(批号: K1624002,纯度:>98%)对照品均购自上海阿拉丁生化科技股份有限公司;槲皮素(批号: L140Q05,纯度:>98%)、芦丁(批号: LTC0Q20,纯度:>98%)对照品均购自百灵威科技有限公司;乙醇、石油醚、磷酸、盐酸均为分析纯,甲酸、甲醇均为色谱纯,水为

2 方法与结果

超纯水。

2.1 沙棘黄酮醇提物制备

1.2 药材、对照品与试剂


沙棘叶、沙棘籽去杂后,经粉碎机粉碎后烘干,以料液比1:8(g/mL)加入石油醚,70℃加热回流2h,过滤后弃滤液,剩余滤渣挥干石油醚,得脱脂脱水沙棘叶、沙棘籽样品。精密称定10g样品,以50%乙醇回流提取1h,回收乙醇,干燥至无醇味,残留物冻干至呈粉末状。

2.2 6种黄酮苷元含量测定及方法学验证

2.2.1 供试品溶液制备 精密称取"2.1"项沙棘黄酮粉末 50 mg,加入 20 mL 甲醇,混合均匀后加入 20 mL 25%盐酸溶液,以氮气保护,90 ℃下加热回流 1 h,待溶液冷却至室温后,过滤。将续滤液转移至 50 mL 量瓶中,摇匀,用甲醇定容至刻度,即得供试品溶液。

2.2.2 对照品溶液制备 分别精密称取儿茶素、芦丁、杨梅素、槲皮素、山柰酚、异鼠李素对照品各 5.0 mg,混合均匀后,用甲醇逐级稀释,以盐酸调节 pH 至 2.5,得质量浓度分别为 0.23、0.47、0.94、1.88、3.75、7.50、15.00、30.00 μ g/mL的系列混合对照品溶液。

2.2.3 色谱条件 色谱柱: Shimadzu $C_{18}(150 \text{ mm} \times 2.1 \text{ mm}, 5 \mu\text{m})$;流动相: 甲醇-水(含 0.4% %磷酸)(60: 40, V/V);流速: 1.0 mL/min;柱温: 40%;检测波长: 208 nm; 进样量: $20 \mu\text{L}$ 。取对照品及样品(正交试验号1)溶液进样分析,结果理论板数以6种成分计均大于1500,峰1~4的分离度均大于2,峰5~6分离度约为1.5,系统适用性良好。色谱图见图1。

注:1.儿茶素;2.芦丁;3.杨梅素;4.槲皮素;5.山柰酚;6.异鼠李素 Note:1.catechins; 2.rutin; 3.myricetin; 4.quercetin; 5.kaempferol; 6.isorhamnetin

图1 高效液相色谱图

Fig 1 HPLC chromatograms

2.2.4 线性关系及定量限考察 取系列质量浓度的混 合对照品溶液进样检测,建立各黄酮苷元的标准工作曲 线,以溶液中各黄酮苷元的质量浓度为横坐标(x)、以相 应的黄酮苷元的峰面积为纵坐标(y)进行线性回归,得 回归方程分别为儿茶素:y=128~086x+101~987($R^2=$ 0.999 6);芦丁:y=13 553x+27 405(R²=0.999 6);杨梅素: $y=32713x-2733.8(R^2=0.9999)$;槲皮素:y=37503x-9 514.1 (R^2 =0.999 4);山柰酚:y=38 039x-5 124.4 $(R^2=0.9997)$; 异鼠李素: y=38376x-3240.2 $(R^2=0.9997)$ 0.9998)。结果表明,6种黄酮苷元检测质量浓度线性范 围均为0.234~30.0 μg/mL,定量限均为0.234 μg/mL。 2.2.5 精密度、稳定性、重复性、准确度试验 按照相关 试验要求,进行方法学验证。结果表明,精密度试验中, 6种黄酮苷元峰面积RSD值均小于1.77%(n=6);稳定 性试验中(12 h内),6种黄酮苷元峰面积RSD值均小于 1.51% (n=6); 重复性试验中,6种黄酮苷元峰面积RSD 值均小于1.83%(n=6);准确度试验中,6种黄酮苷元的 加样回收率均为99.69%~106.81%(RSD=3.59%, n=6)。

2.3 正交试验优化黄酮提取工艺

2.3.1 正交试验设计 参考前期沙棘叶黄酮提取单因素试验结果^[10],选择乙醇体积分数(A)、提取时间(B)、提取次数(C)、料液比(D)为考察因素,以6种黄酮苷元的提取率总和为综合考察指标,采用L₉(3⁴)表设计正交试验^[11],对提取工艺进行考察。各黄酮苷元的提取率=各黄酮苷元量/沙棘原料质量×100%。6种黄酮苷元的提取率总和即为各黄酮苷元提取率之和。

因素与水平见表1。

表1 因素与水平

Tab 1 Factors and levels

水平 -	因素						
小十 -	乙醇体积分数(A),%	提取时间(B),h	提取次数(C)	料液比(D),g/mL			
1	50	1.0	1	1:8			
2	60	1.5	2	1:16			
3	70	2.0	3	1:24			

2.3.2 沙棘叶正交试验结果与分析 按照 L₂(3⁴)提取正 交试验设计,沙棘叶提取试验安排及方差分析结果见表 2、表 3。

表2 沙棘叶正交试验设计与结果

Tab 2 Orthogonal test design and results of leaves of H. rhamnoides

	フ輸出和八	祖斯中台	祖市本粉	料液比			提	取率,	mg/g		
试验号	乙醇体积分数(A),%	提取时间 (B),h	提取次数 (C)	(D), g/mL	儿茶 素	芦丁	杨梅 素	槲皮 素	山柰 酚	异鼠 李素	总和
1	1	1	1	1	10.3	9.1	11.6	2.1	1.6	2.0	36.6
2	1	2	2	2	12.3	9.9	12.5	2.0	1.6	1.9	40.3
3	1	3	3	3	19.1	7.2	14.1	2.5	1.9	2.4	47.3
4	2	1	2	3	15.4	5.8	10.7	2.0	1.7	2.0	37.6
5	2	2	3	1	11.7	4.3	8.8	2.0	1.5	1.9	30.2
6	2	3	1	2	14.1	5.9	11.2	2.2	1.7	2.1	37.1
7	3	1	3	2	16.6	9.6	15.0	2.5	2.0	2.5	48.1
8	3	2	1	3	11.3	6.9	11.6	2.1	1.6	2.1	35.5
9	3	3	2	1	17.0	14.3	8.8	2.2	2.0	2.4	46.7
K_1	41.40	40.77	36.40	37.83							
K_2	34.97	35.33	41.53	41.83							
K_3	43.43	43.70	41.87	40.13							
R	8.47	8.37	5.47	4.00							

表3 沙棘叶正交试验结果的方差分析

Tab 3 Variance analysis in orthogonal test results of leaves of *H. rhamnoides*

误差来源	离均差平方和	自由度	均方差	F	P
A	117.21	2	58.60	586.03	< 0.01
В	108.13	2	54.06	540.63	< 0.01
С	56.35	2	28.17	281.73	< 0.01
D	24.12	2	12.09	120.90	< 0.01
误差	0.20		0.10		

 $\hat{r}: F_{0.05}(2,2) = 19: F_{0.01}(2,2) = 99$

Note: $F_{0.05}(2,2) = 19$; $F_{0.01}(2,2) = 99$

由表2直观分析可知,A因素中各水平影响大小顺序为 $A_3>A_1>A_2$,B因素中各水平影响大小顺序为 $B_3>$

 $B_1 > B_2$,C因素中各水平影响大小顺序为 $C_3 > C_2 > C_1$,D因素中各水平影响大小顺序为 $D_2 > D_3 > D_1$,各因素对提取工艺影响大小顺序为A > B > C > D,最优工艺条件为 $A_3 B_3 C_3 D_2$ 。方差分析结果显示,各因素均有极显著影响(P < 0.01),其中A因素影响最大,D因素的影响最小。综合考虑,最终确定沙棘叶中黄酮最优提取工艺条件为乙醇体积分数 70%、提取 3%、每次提取 2.0 h、料液比 16。

2.3.3 沙棘籽正交试验结果与分析 依据"2.3.2"项下相同方法,对沙棘籽中的黄酮提取条件进行优化,试验设计与方差分析结果见表4、表5。

表 4 沙棘籽正交试验设计与结果

Tab 4 Orthogonal test design and results of seeds of H. rhamnoides

	フむは和八	田野山台	祖斯林粉	料液比	料液比 提取率,mg/g						
试验号	乙醇体积分数(A),%	提取时间 (B),h	提取次数 (C)	(D), g/mL	儿茶 素	芦丁	杨梅 素	槲皮 素	山柰 酚	异鼠 李素	总和
1	1	1	1	1	3.8	3.2	0.1	0.3	0.2	0.3	8.0
2	1	2	2	2	5.7	3.0	0.1	0.2	0.2	0.3	9.4
3	1	3	3	3	8.5	4.3	0.2	0.3	0.2	0.3	13.9
4	2	1	2	3	5.3	3.2	0.1	0.3	0.2	0.3	9.4
5	2	2	3	1	5.9	3.6	0.2	0.3	0.2	0.3	10.5
6	2	3	1	2	3.2	1.3	0.1	0.1	0.1	0.1	4.9
7	3	1	3	2	5.6	2.1	0.1	0.2	0.2	0.3	8.5
8	3	2	1	3	5.0	2.5	0.1	0.2	0.2	0.3	8.2
9	3	3	2	1	5.8	2.4	0.1	0.3	0.2	0.3	9.0
K_1	10.43	8.63	7.03	9.17							
K_2	8.27	9.37	9.27	7.60							
K_3	8.57	9.27	10.97	10.50							
R	2.17	0.73	3.93	2.90							

表5 沙棘籽正交试验结果的方差分析

Tab 5 Variance analysis in orthogonal test results of seeds of *H. rhamnoides*

误差来源	离均差平方和	自由度	均方差	F	P
A	8.27	2	4.13	55.13	< 0.05
В	0.95	2	0.47	6.33	
С	23.35	2	11.67	155.66	< 0.01
D	12.64	2	6.32	84.28	< 0.05
误差	0.15		0.08		

注: $F_{0.05}(2,2)=19$; $F_{0.01}(2,2)=99$

Note: $F_{0.05}(2,2) = 19$; $F_{0.01}(2,2) = 99$

由表4直观分析可知,A因素中各水平影响大小顺序为 $A_1 > A_3 > A_2$,B因素中各水平影响大小顺序为 $B_2 > B_3 > B_1$,C因素中各水平影响大小顺序为 $C_3 > C_2 > C_1$,D因素中各水平影响大小顺序为 $D_3 > D_1 > D_2$,各因素对提取工艺影响大小为C > D > A > B,最优工艺条件为 $A_1B_2C_3D_3$ 。方差分析表结果显示,C因素对结果有极显著影响(P < 0.01),A、D因素对结果也有显著影响(P < 0.05),B因素对结果无显著影响。综合考虑,最终确定沙棘籽中黄酮最优提取工艺条件为乙醇体积分数50%、提取3次、每次提取1.5 h、料液比1:24。

2.4 验证试验

取同批沙棘叶和沙棘籽粉末各3份,每份100g,以 正交试验所得优化条件进行工艺验证试验,结果见表6。

表 6 沙棘叶和沙棘籽中黄酮提取工艺验证试验(n=3)

Tab 6 Verification test of the extraction technology for flavonoids in leaves and seeds of *H. rhamnoides* (n=3)

共和	沙棘叶		沙棘籽		
黄酮	提取率均值,mg/g	RSD,%	提取率均值,mg/g	RSD,%	
儿茶素 儿茶素	19.132	3.5	9.124	4.0	
芦丁	14.164	3.7	5.003	3.3	
杨梅素	15.283	8.0	0.198	1.6	
槲皮素	2.920	0.2	0.459	2.5	
山柰酚	2.308	0.1	0.254	1.1	
异鼠李素	2.587	0.5	0.346	0.2	
总和	56.394	1.4	15.384	3.4	

表6结果显示,沙棘叶中儿茶素、芦丁、杨梅素、槲皮素、山柰酚、异鼠李素的提取率分别约为19.1、14.2、15.3、2.9、2.3、2.6 mg/g,提取率总和约为56.4 mg/g;沙棘籽中6种黄酮苷元的提取率分别约为9.1、5.0、0.2、0.5、0.3、0.3 mg/g,提取率总和约为15.4 mg/g。验证结果提示,优化后的提取工艺结果稳定、可靠。

3 讨论

现有的黄酮提取技术中,多以紫外分光光度法测定所得总黄酮的含量结果为检验标准,无法鉴别具体的黄酮种类及其含量,因此无法对提取工艺和过程进行精确质控。而笔者通过研究发现,采用高效液相色谱法,可对沙棘叶和沙棘籽中的6种黄酮苷元进行快速分离和精确分析,可实现对提取物中黄酮种类和含量的全面分析。另外再结合正交试验,利用建立的6种黄酮苷元的含量测定方法得到的含量结果,可筛选合适的提取条件,使得6种黄酮成分均能同时并最大化被提取出来,兼顾了不同指标的综合效应,实现了提取工艺的整体优化。本试验结果表明,采用优化后的提取工艺,沙棘叶和沙棘籽中的黄酮成分提取效果明显:沙棘叶6种黄酮苷元的提取率总和高达56.4 mg/g,沙棘籽达到15.4 mg/g,均高于文献[10,12-14]报道的水平。因此,本试验结果为沙棘黄酮的工业化提取提供了新的方法参考。

从本试验结果也可以看出,沙棘叶及沙棘籽中的黄酮含量差异明显。沙棘叶中的黄酮苷元以儿茶素、杨梅素、芦丁为主,同时槲皮素、山柰酚、异鼠李素也有一定的含量,因此适当提高醇提液中乙醇的比例、延长提取时间,可兼顾6种黄酮类成分,获得最优提取效果。而沙棘籽中黄酮含量较低,且以水溶性好的儿茶素和芦丁为主,水溶性较差的其他黄酮总占比不足1%,因此适当调高醇提液中的水分比例,可提高水溶性黄酮的提取率,获得最优提取效果。综上,采用各黄酮成分组成的多指

标对药材中的黄酮进行提取,可依据药材中所含黄酮的 种类和特性及时调整提取条件,与只以总黄酮为考察指 标的工艺相比,可获得更优的提取效果。

参考文献

- [1] 高月萍.沙棘的开发利用价值研究[J].现代农业,2016 (3):82-83.
- [2] 彭游,汤明,胡小铭,等.沙棘黄酮提取进展[J].天然产物研究与开发,2012,24(4):562-567.
- [3] 田茜,何晨,贺敬霞,等.沙棘总黄酮-聚乙烯吡咯烷酮 K30固体分散体的制备、表征及体外溶出研究[J].中国药 房,2017,28(1):115-118.
- [4] Muselin F, Brezovan D, Savici J, et al. The use of sea buckthorn (Hippophae rhamnoides L.) and milk thistle (Silybum marianum L.) in alloxan induced diabetes mellitus in rats[J]. Scientific Papers Animal Science & Biotechnologies, 2016, 49(1):280–283.
- [5] 张颖,张立木,秦树存,等.泰山沙棘果提取物调血脂作用研究[J].中国药房,2011,22(7):586-588.
- [6] Yogendra Kumar MS, Tirpude RJ, Maheshwari DT, et al. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides, L.) leaves in vitro[J]. Food Chemistry, 2013, 141 (4): 3443-3450.
- [7] Pallavi B, Chandresh V, Kanika K, et al. In vitro evaluation of antidiabetic and antioxidant activity of Seabuckthorn (Hippophae rhamnoides L.) leaves[J]. *J Med Plant Res*, 2015, 9(35):929–932.
- [8] 国家药典委员会.中华人民共和国药典:一部[S]. 2015年版.北京:中国医药科技出版社,2015:184-185.
- [9] 严娅.沙棘叶茶加工工艺研究[D].乌鲁木齐:新疆农业大学,2015.
- [10] 陈燕玲,冯静,吴小培,等.沙棘叶黄酮提取工艺的单因素研究及其品类变化[J].广州化工,2017,45(11):91-93.
- [11] 赵之丽,赵平,邓光锐,等.多指标正交试验优化复方江南 卷柏散提取工艺[J].中国药房,2016,27(28):3996-3998.
- [12] 王树林.沙棘叶黄酮提取工艺研究[J].食品研究与开发, 2008,29(8):110-113.
- [13] 尚军,杨子驹,陈婧媛.肋果沙棘籽总黄酮的两种不同提取方法比较[J].青海师范大学学报(自然科学版),2014,30(1):38-40.
- [14] 孙斌, 瞿伟菁, 张晓玲, 等. 高效液相色谱法测定沙棘籽渣 中黄酮苷元含量[J]. 中国药学杂志, 2005, 40(2): 139-141.

(收稿日期:2017-06-21 修回日期:2017-09-08) (编辑:刘 萍)