马来酸噻吗洛尔滴眼液中有关物质的测定及杂质定性研究△

刘荷英*,程奇珍*,周 敏,易 巧(江西省药品检验检测研究院/江西省药品与医疗器械质量工程技术研究中心,南昌 330029)

中图分类号 R927.1 文献标志码 A 文章编号 1001-0408(2018)16-2208-07 **DOI** 10.6039/j.issn.1001-0408.2018.16.11

摘 要 目的:建立测定马来酸噻吗洛尔滴眼液中有关物质的方法,并对其杂质进行定性。方法:采用高效液相色谱法测定有关物质的含量,色谱柱为ACES C₁₈,流动相为甲醇与4.32 g/L 辛烷磺酸钠溶液(冰醋酸调 pH 至 3.0)的混合溶液(50:50, V/V)-甲醇(梯度洗脱),流速为1.0 mL/min,检测波长为295 nm,柱温为30 °C,进样量为20 μ L。采用制备液相色谱法制备杂质纯品,色谱柱为YMC-PACK ODS-A,流动相为甲醇-0.01%三氟乙酸(40:60, V/V)和甲醇-0.01%三氟乙酸(20:80, V/V),流速为8 mL/min,检测波长为295 nm,柱温为20 °C,进样量为0.8 mL。采用液相色谱串联质谱法进行结构推测,色谱柱为Waters ACQUITY UPLC BEH C₁₈,流动相为甲醇-5 mmol/L 甲酸铵溶液(含0.05%甲酸)(梯度洗脱),流速为0.2 mL/min,柱温为20 °C,进样量为2 μ L;采用电喷雾离子源,以质谱全扫描模式检测母离子,以子离子扫描模式检测碎片离子。采用氢谱、碳谱进行结构确证和推测。结果:马来酸噻吗洛尔检测质量浓度线性范围为0.501~10.02 μ g/mL(r=0.9999);定量限为3.012 ng,检出限为1.004 ng;精密度试验的RSD为0.2%,稳定性和重复性试验的RSD均小于5%。确证了杂质 I、II、III的结构,并推测了杂质 IV和 V的结构。结论:该方法快速、准确、专属性好,可用于马来酸噻吗洛尔滴眼液的质量控制。

关键词 马来酸噻吗洛尔;有关物质;降解杂质;高效液相色谱法;制备液相色谱;液相色谱串联质谱法;氢谱;碳谱;测定;结构推测

Determination of Related Substance and Impurities Qualitative Study of Timology Maleate Eye Drops

LIU Heying, CHENG Qizhen, ZHOU Min, YI Qiao (Jiangxi Institute for Drug Control/Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Manchang 330029, China)

ABSTRACT OBJECTIVE: To establish a method for the determination of related substances in Timolol maleate eye drops, and to conduct qualitative analysis of its degradation impurities MECHODS: HPLC method was adopted for determination of related substance. The determination was performed on ACES C18 column with mobile phase consisted of the mixed solution of methanol and 4.32 g/L sodium octane sulfonate (pH adjusted to 31 with glacial acetic acid) 50: 50, V/V)-methanol (gradient elution) at flow rate of 1.0 mL/min. The detection wavelength was set at 295 nm, and column temperature was 30 $^{\circ}$ C. The sample size was 20 μ L. the determination was performed on YMC-PACK ODS-A column Preparative LC method was used to prepare pure impurities. with mobile phase consisted of methanol-0.01% the on acetic acid (40:60, V/V) and methanol-0.01% trifluoroacetic acid (20:80, V/V) at flow rate of 8 mL/min. The detection wavelength was set at 295 nm, and column temperature was 20 °C. The sample size was 0.8 mL. LC-MS/MS/method was adopted. The determination was performed on Waters ACQUITY UPLC BEH C₁₈ column with mobile phase considered in methanol-5 mmol/L ammonium formate (0.05% formic acid) (gradient elution) at flow rate of 0.2 mL/ min. The column temperature was 20 °C. The sample size was 2 µL. The electrospray ionization source was conducted, detecting patient is by MS full scan and fragment ion by daughter ion scan. The structure was confirmed and speculated by ¹H-NMR and ¹³C-NMR. RESULTS: The linear range of timolol maleate was 0.501-10.02 μ g/mL (r=0.999 9). The limit of quantitation was 3.012 ng, and the limit of detection was 1.004 ng. RSD of precision test was 0.2%. RSDs of stability and reproducibility tests were all lower than 5%. The structures of impurity I , II and III were confirmed, and those of impurity IV and V were speculated. CONCLUSIONS: The method is rapid, accurate and specific. It can be used for the determination of related substance in Timolol maleate eye drops.

KEYWORDS Timolol maleate; Related substance; Degradation impurity; HPLC; Preparative LC; LC-MS/MS; ¹H-NMR; ¹³C-NMR; Determination; Structure speculation

[20] 刘月新,党玉洁,邹茜.四物汤传统汤剂中微量元素含量 测定[J].亚太传统医药,2016,12(24):27-29.

Δ基金项目:国家药品评价抽验计划质量评价分析项目;江西省 食品药品监督管理局科技计划项目(No.2015yp11)

- * 主管药师,硕士研究生。研究方向:药物分析。电话:0791-88158656。E-mail:276553071@qq.com
- #通信作者:主任药师。研究方向:药物分析。电话:0791-88158656。E-mail:cqz1110@sina.com
- [21] 刘雨田,郭中文.微量元素硼的营养研究进展[J].郑州牧 业工程高等专科学校学报,2000,20(4):265-266.
- [22] 谢伟,徐国茂,叶琴.微量元素硼与人体健康[J]. 微量元 素与健康研究,2010,27(1):65-66.
- [23] 曾琦斐. 微量元素与人体健康[J]. 中国科技信息, 2008. DOI:10.3969/j.issn.1001-8972.2008.03.101.

(收稿日期:2018-03-06 修回日期:2018-06-14) (编辑:陈 宏)

马来酸噻吗洛尔滴眼液是治疗原发性开角型青光眼 及无晶状体眼性青光眼的药物。该滴眼液及其原料药 的现行标准均收载于2015年版《中国药典》(二部)四,滴 眼液标准中无有关物质检查项,原料药标准中采用薄层 色谱法控制有关物质,而该方法灵敏度和专属性均较 差。2017年版《英国药典》四中马来酸噻吗洛尔滴眼液及 其原料药标准均设置了有关物质检查项,以高效液相色 谱法(HPLC)测定杂质B、C、D、E、F和其他杂质,并收载 了杂质A、B、C、D、E、F、G、H、I、J的结构。《美国药典》 (40版)¹³中仅对马来酸噻吗洛尔原料药标准设置了有关 物质检查项,也以HPLC法测定杂质B、C、D、E、F和其他 杂质,但色谱条件与2017年版《英国药典》四不同。《日本 药典》(17版)四中仅收载了马来酸噻吗洛尔原料药标准, 该标准采用HPLC法,以主成分自身对照法计算单个杂 质和总杂质的含量。《欧洲药典》(9.0版)回中仅收载了马 来酸噻吗洛尔原料药标准,其有关物质测定方法与2017 年版《英国药典》^[2]完全一致。目前,国内外有关文献^[6-10] 报道的马来酸噻吗洛尔滴眼液或原料药中有关物质的 测定方法均为HPLC法。有研究将系统适用性试验中通 过碱破坏后的样品与《欧洲药典》(9.0版)同对比以确定 杂质B、D、G¹⁶;另有研究采用HPLC法测定了马来酸噻1 吗洛尔滴眼液中主成分和3个可能的降解杂质(其结构 与杂质B、D、G结构一致)¹⁰。此外,未见其他有关马来 酸噻吗洛尔降解杂质的报道,有研究认为,可来酸噻吗 洛尔进入人体后, 噻吗洛尔吗啉环上的碳原子首先被羟 化,而后进一步代谢为噻吗格尔乙醇胺四,目前,国内 企业生产的马来酸噻吗洛尔滴眼液中添加的抑菌剂有4 种,分别为羟苯乙酯、苯扎溴铵、硫柳汞和醋酸苯汞129, 有关物质测定时需排除加菌剂的色谱峰干扰。本课题 组参考2011年版《英国药典》四马来酸噻吗洛尔原料药 标准中有关物质测定的色谱条件,建立了马来酸噻吗洛 尔滴眼液中有关物质的测定方法,同时通过强制降解试 验考察了马来酸噻吗洛尔滴眼液中的主要降解杂质,并 以液相色谱串联质谱法(LC-MS/MS)、氢谱(¹H-NMR)、 碳谱(¹³C-NMR)对杂质的结构进行了确证或推测,旨在 为其质量控制提供参考。

1 材料

1.1 仪器

U3000型HPLC仪,包括U3000四元泵、U3000柱温 箱、U3000二极管阵列检测器(DAD)等(美国戴安公 司);LC-6AD型LC仪,包括LC-6AD二元泵、SIL-20A 自动进样器、CTO-20A 柱温箱、SPD-M20A DAD、 FRC-10A馏分收集器(日本岛津公司);Xevo TQ-S型液 相色谱-串联三重四级杆质谱仪,包括Acquity UPLC自 动进样器、Acquity UPLC 四元泵、Acquity UPLC 柱温 箱、Acquity UPLC DAD(美国沃特世公司);Bruker 600 MHz核磁共振谱仪(德国布鲁克公司);MS105型电子分 析天平(瑞士梅特勒-托利多公司)。

1.2 药品与试剂

马来酸噻吗洛尔滴眼液[武汉五景药业有限公司, 批号:16050101、16040105、16040106,规格:5 mL:25 mg (按噻吗洛尔计)];马来酸噻吗洛尔原料药(武汉五景药 业有限公司,批号:150207,纯度:>99%);噻吗洛尔系 统适用性对照品(《欧洲药典》(9.0版),欧洲药品质量管 理局,ID:001EI2,规格:5 mg/支,含马来酸噻吗洛尔和杂 质B、C、D、F的混合物);辛烷磺酸钠(离子对色谱用试 剂,北京百灵威科技有限公司);甲醇、甲酸、三氟乙酸、 甲酸铵均为色谱纯,冰醋酸等其他试剂均为分析纯,水 为纯化水。

2 方法与结果

2.1 有关物质测定的 HPLC 色谱条件

色谱柱:ACES C₁₈(250 mm×4.6 mm, 5 μ m);流动 相:甲醇与4.32 g/L 杂烷磺酸钠溶液(冰醋酸调 pH至 3.0)的混合溶液(50:50,4/)>(A)-甲醇(B),梯度洗脱 (0~14 mm,97.5% A;14~15.5 min,97.5% A)→10% A; 15.5~25 min,70% A;25~25.5 min,70% A→97.5% A; 25.5~32 min,97.5% A)、流速:10 mL/min;检测波长: 295 nm:柱温:0°C;进样量:20 μ L。

22 制备杂质纯品的LC色谱条件

色谱柱:YMC-PACK ODS-A(250 mm×20 mm,5 μm);流动相:甲醇-0.01%三氟乙酸溶液(40:60,*V/V*)(流动相①)和甲醇-0.01%三氟乙酸溶液(20:80,*V/V*)(流动相②);流速:8 mL/min;检测波长:295 nm;柱温: 20℃;进样量:0.8 mL。

2.3 杂质结构推测的LC-MS/MS条件

2.3.1 色谱条件 色谱柱: Waters ACQUITY UPLC BEH C₁₈(50 mm×2.1 mm, 1.7 μm);流动相:甲醇(A)-5 mmol/L甲酸铵溶液(含0.05%甲酸)(B),梯度洗脱(0~ 5 min, 20% A→35% A;5~8 min, 35% A→60% A;8~ 8.1 min, 60% A→20% A;8.1~11 min, 20% A);流速: 0.2 mL/min;柱温:20 ℃;进样量:2 μL。

2.3.2 质谱条件 离子源:电喷雾离子源(ESI)/大气压 化学离子源(APCI),正离子化(ESI⁺);去溶剂温度: 400℃;干燥气流量:8L/h;毛细管电压:1.5kV;锥孔电 压:40V;母离子扫描模式:质谱全扫描模式检测母离 子,扫描范围:*m/z*100~1000;碰撞能量:30V;子离子 扫描模式:子离子扫描模式检测碎片离子,扫描范围根 据母离子质荷比而定。

2.4 溶液的制备

2.4.1 供试品溶液 精密量取马来酸噻吗洛尔滴眼液 样品适量,加水稀释制成每1mL中含马来酸噻吗洛尔2.5 mg的溶液,经0.45 µm微孔滤膜滤过,取续滤液,即得。

2.4.2 自身对照溶液 精密量取供试品溶液1mL,置于 100 mL量瓶中,加水稀释至刻度,摇匀,精密量取5 mL, 置于50 mL量瓶中,加水稀释至刻度,摇匀,即得。

2.4.3 空白辅料溶液 按马来酸噻吗洛尔滴眼的制备 工艺制备不含马来酸噻吗洛尔的阴性样品,取适量按 "2.4.1"项下方法制备空白辅料溶液。

2.4.4 系统适用性溶液 取噻吗洛尔系统适用性对照 品1支,精密加入"2.1"项下流动相(A)2mL溶解,摇匀, 即得。

2.5 系统适用性试验

20.0 30.0

t, min

A.供试品溶液

C.空白辅料溶液

注:1.马来酸;2.羟苯乙酯;3. 噻吗洛

Note: 1. maleic acid; 2. ethylparaben;

40.0 50.0

40

30.0

20.0

-3.0

30.0 -

20.0

10.0

-3.07

mAU

10.0

10.0 20.0 30.0

图1

Den 10.0

分别量取"2.4"项下供试品溶液、自身对照溶液、空 白辅料溶液、系统适用性溶液各20 µL,按"2.1"项下色谱 条件进样测定,记录色谱图,详见图1。由图1可知,杂 质峰之间、主成分与杂质峰之间均能达到基线分离,分 离度均大于1.5,空白辅料对测定无干扰。

30.0

20.0

10.0

3.0-

30.0₁

20.0 mAU

10.0

10.0 20.0 30.0 40.0

10.0 - 20.0

timolol

B.自身对照溶液

30.0 40.0 50.0

D.系统适用性溶液

mAU

mol/L 氢氧化钠溶液2mL中和,加水稀释至刻度,摇匀, 滤过,取续滤液20 µL,按"2.1"项下色谱条件进样测定, 记录色谱图,详见图2E、图2F。

2.6.4 光照破坏 精密量取马来酸噻吗洛尔滴眼液样 品和阴性样品各5mL,分别置于10mL量瓶中,于4500 lx紫外灯下照射24h,加水稀释至刻度,摇匀,滤过,取 续滤液 20 µL,按"2.1"项下色谱条件进样测定,记录色 谱图,详见图2G、图2H。

2.6.5 高温破坏 精密量取马来酸噻吗洛尔滴眼液样品 和阴性样品各5mL,分别置于10mL量瓶中,置于100℃ 水浴上加热1h,放冷后加水稀释至刻度,摇匀,滤过,取 续滤液 20 µL,按"2.1"项下色谱条件进样测定,记录色 谱图,详见图2I、图2J。

注:1.杂质Ⅰ;2.杂质Ⅱ;3.杂质Ⅲ;4.杂质Ⅳ;5.杂质V Note: 1. impurity I ; 2. impurity II ; 3. impurity III ; 4. impurity IV ; 5. impurity V

图2 强制降解试验高效液相色谱图 Fig 2 HPLC chromatograms of destructive tests

由图2可知,马来酸噻吗洛尔滴眼液样品在碱破坏 条件下可降解出杂质 Ⅰ和杂质 Ⅱ,相对于噻吗洛尔峰的 保留时间分别为0.24和0.63;在氧化破坏条件下降解出 杂质Ⅲ和杂质Ⅳ,相对于噻吗洛尔峰的保留时间分别为 0.11和0.32;在酸破坏条件下主要降解出杂质V,相对于 噻吗洛尔峰的保留时间为0.50;在光照和高温破坏条件 下均降解出杂质Ⅱ和杂质Ⅲ。阴性样品经上述破坏后

系统适用性试验高效液相色谱图

2.6.1 碱破坏 精密量取马来酸噻吗洛尔滴眼液样品 和阴性样品各5mL,分别置于10mL量瓶中,加2mol/L 氢氧化钠溶液2mL,置于100℃水浴上加热1h,放冷后 加2 mol/L盐酸溶液2 mL中和,加水稀释至刻度,摇匀, 滤过,取续滤液20 µL,按"2.1"项下色谱条件进样测定, 记录色谱图,详见图2A、图2B。

2.6.2 氧化破坏 精密量取马来酸噻吗洛尔滴眼液样 品和阴性样品各5mL,分别置于10mL量瓶中,加30% 过氧化氢溶液2mL, 室温放置1h, 加水稀释至刻度, 摇 匀,滤过,取续滤液20 µL,按"2.1"项下色谱条件进样测 定,记录色谱图,详见图2C、图2D。

2.6.3 酸破坏 精密量取马来酸噻吗洛尔滴眼液样品 和阴性样品各5mL,分别置于10mL量瓶中,加2mol/L 盐酸溶液2mL,置于100℃水浴上加热1h,放冷后加2 均发生降解,但其降解产物的色谱峰不干扰杂质 I ~ V 的测定。

2.7 线性关系考察

精密称取马来酸噻吗洛尔原料药10.02 mg,置于 100 mL量瓶中,加水溶解并稀释至刻度,摇匀,分别精密 量取0.5、1.0、2.5、5.0、10.0 mL,置于100 mL量瓶中,加 水稀释至刻度,摇匀,得质量浓度分别为0.501、1.002、 2.505、5.010、10.02 μ g/mL的线性关系考察系列溶液。 精密量取上述线性关系考察系列溶液各20 μ L,按"2.1" 项下色谱条件进样测定,记录峰面积。以马来酸噻吗洛 尔质量浓度(x,μ g/mL)为横坐标、峰面积(y)为纵坐标 进行线性回归,得回归方程为y=0.388x-0.002(r= 0.999 9)。结果表明,马来酸噻吗洛尔检测质量浓度线 性范围为0.501~10.02 μ g/mL。

2.8 定量限与检出限考察

精密称取马来酸噻吗洛尔原料药25.10 mg,置于10 mL量瓶中,加水溶解并稀释至刻度,摇匀,精密量取1 mL,置于100 mL量瓶中,加水稀释至刻度,摇匀,精密量 取5 mL,置于50 mL量瓶中,加水稀释至刻度,摇匀,分别精密量取3、1 mL,置于50 mL量瓶中,加水稀释至刻度,摇匀,分别精密量取3、1 mL,置于50 mL量瓶中,加水稀释至刻度,摇匀,得马来酸噻吗洛尔质量浓度分别为150.60、50.20 ng/mL的溶液。分别量取上述溶液20 μL,按"2.1"项下色谱条件进样测定,记录峰面积,并计算定量限(偏噪比为10:1)、检出限(信噪比为3:1)。 结果 马来酸噻 吗洛尔的定量限为3.012 ng, 检出限为1004 ng。

2.9 精密度试验

取"2.4.2"项下自身对照溶液(批号+16050101)20 μL,按"2.1"项下色谱条件连续选样测定6次,记录峰面积。结果,马来酸噻唑洛尔峰面积的RSD为0.2%(n= 6),表明本方法搞密度良好。

2.10 稳定性试验

取"2.4.1"项下供试品溶液(批号:16050101)适量, 分别于室温下放置0、2、4、8、10、12、24 h时按"2.1"项下 色谱条件进样测定,记录峰面积。结果,杂质Ⅱ、杂质 Ⅲ、其他杂质1、其他杂质2峰面积的RSD分别为2.8%、 2.1%、3.6%、2.9%(*n*=7),表明供试品溶液在室温下放 置24 h内基本稳定。

2.11 重复性试验

取马来酸噻吗洛尔滴眼液样品(批号:16050101)适 量,按"2.4.1"和"2.4.2"项下方法分别制备供试品溶液和 对照溶液,各6份,分别精密量取两种溶液各20μL,按 "2.1"项下色谱条件进样测定,记录峰面积,并按不加校 正因子的主成分自身对照法计算样品中各杂质的含 量。结果,杂质 II、杂质 III、其他杂质1、其他杂质2的平 均含量分别为0.02%、0.05%、0.01%、0.03%,峰面积的 RSD分别为3.4%、3.0%、4.8%、3.8%(n=6),表明本方 法重复性良好。

2.12 样品有关物质测定

取3批马来酸噻吗洛尔滴眼液样品各适量,按 "2.4.1"和"2.4.2"项下方法分别制备供试品溶液和对照溶 液,各3份,再按"2.1"项下色谱条件进样测定,记录峰面 积,并按不加校正因子的主成分自身对照法计算样品中 各杂质的含量,结果见表1。

表1 样品有关物质测定结果(n=9,%)

Tab 1 Results of related substance determination of samples(n=9,%)

杂质	批号			
	16050101	16040105	16040106	
杂质 I	未检出	未检出	未检出	
杂质Ⅱ	0.02	0.02	0.02	
杂质Ⅲ	0.05	0.05	0.05	
杂质Ⅳ	未检出	未检出	未检出	
杂质V	未检出	未检出	未检出	
其他杂质1	0.01	0.01	0.01	
其他杂质2	0.03	0.01	0.04	
合计	0.11	0.09	0.12	

2.13 杂质Ⅰ、Ⅱ、Ⅲ的结构确证

取马来酸噻吗洛尔原料药 0.1 g, 置于 10 mL 重瓶 中,加1mo归氢氧化钠溶液1mL,置于100℃水浴上加 热6h,放冷后加1 mol/L盐酸溶液1 mL中和,用水稀释 至刻度,摇匀,滤过,得滤液①(囊滤液)。量取滤液① 0.8 mL 按12.2"项下色谱条件进样,采用流动相①进行 分离、分别收集杂质Ⅰ、Ⅱ的流出液。取马来酸噻吗洛 尔原料药0.1g,置于10mL量瓶中,加30%过氧化氢溶 液1mL,室温放置4h,加水稀释至刻度,摇匀,滤过,得 滤液②(续滤液)。量取滤液② 0.8 mL,按"2.2"项下色 谱条件进样,采用流动相②进行分离,收集杂质Ⅲ的流 出液。将杂质Ⅰ、Ⅱ、Ⅲ的流出液分别于40℃水浴上旋 转蒸发至干,残渣加少量水复溶,冻干,得杂质Ⅰ、Ⅱ、Ⅲ、 的纯品。采用 LC-MS/MS 法对杂质 Ⅰ、Ⅱ、Ⅲ的结构进 行初步推测(分别取杂质Ⅰ、Ⅱ、Ⅲ的纯品适量,加水溶 解,制成杂质Ⅰ、Ⅱ、Ⅲ质量浓度均为1µg/mL的溶液,按 "2.3"项下色谱与质谱条件进样分析,得质谱扫描的母离 子和子离子信息),并采用¹H-NMR和¹³C-NMR对杂质 Ⅰ、Ⅱ、Ⅲ的结构进行确证(溶剂为氘代二甲基亚砜),结 果见表2。

2.14 杂质Ⅳ的结构推测

笔者在试验中发现,杂质Ⅳ不稳定,在制备纯品过 程中极易发生降解,很难制备其纯品,因此仅通过 LC-MS/MS法进行结构推测。精密量取"2.6.3"项下经 氧化破坏的马来酸噻吗洛尔滴眼液样品溶液1mL,置于 10mL量瓶中,加水稀释至刻度,摇匀,滤过,取续滤液2 μL,按"2.3"项下色谱与质谱条件进样分析(为避免污染

表2 杂质 I、II、II的LC-MS/MS和¹H-NMR、¹³C-NMR数据及确证结构 Tab 2 LC-MS/MS、¹H-NMR and ¹³C-NMR data and confirmed structures of impurities I.I.

杂质	母离子, m/z	子离子,m/z	¹ H-NMR (DMSO- d_6 , 600 MHz)	13 C-NMR (DMSO- d_6 , 600 MHz)	确证结构		
Ι	317.4	261.2,244.2,188.1,130.2,74.0	$\begin{split} \delta &: 3.74 \; (2\text{H}, \text{m}, \text{H-1}) \;, 5.05 \; (1\text{H}, \text{m}, \\ 1\text{-}\text{OH}) \;, 8.44 \; (1\text{H}, \text{m}, \text{H-2}) \;, 3.34 \; (2\text{H}, \\ \text{dd}, J &= 6.0, \; 6.0 \; \text{Hz}, \; \text{H-3}) \;, 8.98 \; (1\text{H}, \text{s}, \\ \text{NH-3}) \;, 3.50 \; (2\text{H}, \text{m}, \text{H-3}') \;, 3.69 \; (4\text{H}, \text{m}, \\ \text{H-4}' \;, \text{H-5}' \;) \;, 3.44 \; (2\text{H}, \text{m}, \text{H-6}' \;) \;, 1.29 \\ \; (9\text{H}, \text{d}, \text{H-2}'' \;, \text{H-3}'' \;, \text{H-4}'' \;) \end{split}$	$\begin{split} &\delta: 59.82(\text{C-1}), 78.39(\text{C-2}), 42.68(\text{C-3}), \\ &153.01(\text{C-1}'), 150.65(\text{C-2}'), 47.91(\text{C-3}'), \\ &66.08(\text{C-4}'), 66.08(\text{C-5}'), 47.91(\text{C-6}'), \\ &57.33(\text{C-1}''), 25.36(\text{C-2}''), 25.36(\text{C-3}''), \\ &25.36(\text{C-4}'') \end{split}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		
Π	188.0	144.1,127.0,99.0,74.0	δ:3.43(4H,t, <i>J</i> =4.8,4.8 Hz,H-3,H-6), 3.69(4H,t, <i>J</i> =4.8,4.8 Hz,H-4,H-5)	δ:161.16(C-1),156.47(C-2),44.90(C-3), 65.93(C-4),66.51(C-5),47.51(C-6)	6 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1		
Ш	204.2	113.1,69.1	δ:3.72(2H, m, H-3), 3.68(4H, m, H-4, H-5), 4.28(2H, m, H-6)	$\begin{split} &\delta: 161.16(\text{C-1}), 156.47(\text{C-2}), 44.90(\text{C-3}), \\ &65.93(\text{C-4}), 66.51(\text{C-5}), 47.51(\text{C-6}) \end{split}$	$ \begin{array}{c} $		
	源,通过的 切换到废 判断杂质	岡切换将0~1.2 min、2 液,不进MS仪),根据≠ Ⅳ的峰位(色谱图见图	2.8~4.6 min 的样品 各色谱峰的DAD光 ^{0.0} 3.总离子流图见图 ₹ 00	10 10 10 10 10 10 10 10 10 1.59			

图 4 马来酸噻吗洛尔滴眼液样品氧化破坏总离子流图 Fig 4 TIC of oxidation-degraded Timolol maleate eye drops

由于杂质V含量较低,试验中发现对酸破坏条件进行优化后仍无法提高其含量,很难制备其纯品,因此仅通过LC-MS/MS法进行结构推测。同时,马来酸噻吗洛

图8 杂质IV质谱裂解途径推测 Fig8 MS fragmentation pathway of impurity IV

尔滴眼液样品经酸破坏后,辅料羟苯乙酯峰与杂质V峰 保留时间相近,为避免干扰,用原料药进行酸破坏后分 析。称取马来酸噻吗洛尔原料药约10 mg,置于10 mL 量瓶中,加2mol/L盐酸溶液2mL,置于100℃水浴上加 热1h,放冷后加2mol/L氢氧化钠溶液2mL中和,用水 稀释至刻度,摇匀,滤过,取续滤液20 µL,按"2.1"项下色 谱条件进样,结果原料药经酸破坏后产生的主要杂质 与马来酸噻吗洛尔滴眼液样品经酸破坏后 产生的主 杂质峰的保留时间和DAD光谱图-为杂质 V 质谱条件进 再量取上述续滤液2μL,按"2.3"项下色。 样分析(为避免污染离子源、通过阀切换将0~1.5 min、 4.0~9.0 min的样品溶液切换到废液,不进MS仪 各色谱峰的DAD光谱图判断杂员V的峰位和推测结构 (色谱图见图9,总离子流图见图10,杂质V的DAD光谱 图见图 11, 全扫描质谱图见图 12, 子离子扫描质谱图见 图 13)、 西图 12、 图 13 可知,杂质 V 的母离子为 m/z 313.4,子离子分别为 m/z 184.1、152.1、130.2、74.1, 推测 杂质V为噻吗洛尔吗啉环脱氢产物,可能为1-(叔丁基 氨基)-3-{[4-(4H-1,4-噁嗪-4-基)-1,2,5-噻二唑-3-基] 氧}-2-丙醇,推测其质谱裂解途径见图14。

图9 马来酸噻吗洛尔原料药酸破坏色谱图

Fig 9 Destruction chromatogram of timolol maleate crude drug

3 讨论

国外仅有1篇文献报道了噻吗洛尔的核磁数据^[13]; 虽然2017年版《英国药典》^[2]和《美国药典》(40版)^[3]中均

图10 马来酸噻吗洛尔原料药酸破坏总离子流图

Fig 10 TIC of acid-degraded timolol maleate crude drug

Fig 11 DAD Spectrogram of impurity V

Fig 13 Daughter ion scanning MS spectrum of impurity V (ESI⁺)

收载了其多个已知杂质,但均无噻吗洛尔降解杂质的 核磁数据。本研究中,经'H-NMR和''C-NMR确证,碱 破坏产生的杂质 I 和 II 结构分别与2017年版《英国药 典》^[2]中的杂质 B和D一致,杂质 B化学名为3-[(1,1-二 甲基乙基)氨基]-2-{[4-(吗啉-4-基)-1,2,5-噻二唑-3-基] 氧基}丙烷-1-醇,杂质 D化学名为4-(吗啉-4-基)-1,2,5-噻二唑-3-醇;氧化破坏产生的杂质 III 结构与2017年版 《英国药典》^[2]中的杂质 G一致,化学名为4-(吗啉-4-基)-1,2,5-噻二唑-3(2*H*)-1-氧化物。

对于样品中含量较低或不稳定的杂质,可采用 LC-MS/MS法进行结构推测,本研究即采用LC-MS/MS

图 14 杂质 V 的质谱裂解途径推测 Fig 14 MS fragmentation pathway of impurity V

法推测了杂质IV、V的结构。目前已有多篇文献报道了 LC-MS/MS法用于杂质的结构推测^[14-16],但该法仅通过 质谱推测结果可能产生偏差。对于降解杂质的定性研 究,一般可通过强制降解试验来加速药物路解,以提高 降解杂质的含量,药物经减坏后杂质含量若能达到20% 以上,则易通过制备LC/长来分离和纯化杂质,得到杂质 纯品后可经核磁、红外、紫外等方法进行结构确认,准确 度较高。

马来酸噻吗洛尔滴眼液在氧化破坏、碱破坏、酸破 坏条件下均可发生较明显的降解,其中在氧化破坏和碱 破坏条件下降解较快、降解率较高。马来酸噻吗洛尔氧 化破坏时硫原子首先发生氧化破坏,生成杂质Ⅳ,后醚 键水解生成杂质Ⅲ;碱破坏时易生成杂质Ⅰ,后醚键水 解生成杂质Ⅱ;酸破坏时加热后吗啉环脱氢生成杂质 Ⅴ。其中,杂质Ⅳ、Ⅴ均为未知杂质,且均为首次报道。

综上所述,本方法快速、准确、专属性好,可为马来 酸噻吗洛尔滴眼液的质量控制提供参考。

参考文献

- [1] 国家药典委员会. 中华人民共和国药典:二部[S].2015年 版. 北京:中国医药科技出版社,2015:65-66.
- [2] The British Pharmacopoeia Commission. *British Pharma*copoeia 2017: Vol II [S]. London: The Stationery Office

on behalf of the Medicines and Healthcare products Regulatory Agency (MHRA), 2016:1080-1082.

- [3] The United States Pharmacopeial Convention. *The United States Pharmacopeia* 40: *Vol* 3[S]. Baltimore: United Book Press, 2017:6479–6480.
- [4] 日本药典委员会. 日本药典[S].17版.东京:厚生省药物局,2016:1062-1063.
- [5] Council of Europe. European Pharmacopoeia: Vol 2017: Vol Ⅲ [S]. 9th edition. Strasbourg: Convention on the Elaboration of a European Pharmacopoeia, 2016: 3789–3791.
- [6] 胡兵,单晓芸. HPLC 法测定马来酸噻吗洛尔滴眼液中 有关物质[J]. 中国药师,2012,15(8):1138-1140.
- [7] 霍秀敏.反相离子对色谱法测定马来酸噻吗洛尔及其滴 眼液中有关物质[J].药物分析杂志,2000,20(3):181-184.
- [8] 税庆华,李志明,于盛茂. HPLC法测定马来酸噻吗洛尔 滴眼液中的有关物质[J]. 食品与药品,2005,7(12):41-42.
- [9] 左明,段更利,曹志娟.高效液相色谱法测定右旋噻吗洛 尔及其对映体含量其中中国新药与临床杂志,2003,22 (9):539-542.
- [10] IMAZZO DJ, SNYDER PA. High-performance liquid chromatography of Timolol and potential degradates on dynamically modified spice [S]. J Chromatogra, 1988, 438 (1):85-92-
- LENNARD MS, LEWIS RV, BRAWN LA, et al. Timoolmetabolism and debrisoquine oxidation polymorphism: a population study[J]. *Br J clin Pharmac*, 1989, 27(4): 429-434.
- [12] 刘荷英,周敏,程奇珍,等. 马来酸噻吗洛尔滴眼液中抑 菌剂的质量控制[J]. 中国药房, 2015, 26(7):995-999.
- [13] ZIELIŃSKA-PISKLAK MA, PISKLAK DM, WAWER L. ¹H and ¹³C NMR characteristics of β-blockers[J]. *Magn Reson Chem*, 2011,49(5):284–290.
- [14] 刘荷英,程奇珍,钟振华,等.液相色谱-质谱法对棓丙酯 注射剂中有关物质的初探与结构解析[J].药物分析杂 志,2018,38(3):470-478.
- [15] 杨倩,王志英,唐素芳.二维超高效液相色谱-QTOF质谱 联用技术在盐酸博来霉素杂质谱研究中的应用[J].药物 分析杂志,2016,36(7):1231-1242.
- [16] 缪文玲,侯玉荣,孙晶,等.阿莫西林克拉维酸钾片的杂质谱研究[J].中国药学杂志,2017,52(24):2202-2208.
 (收稿日期:2018-02-14 修回日期:2018-06-15)
 (编辑:陈宏)