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摘 要 目的 构建门诊患者及时取药预测模型，精准识别延迟取药的高风险患者，为智慧药房差异化报到策略的制定与资源优

化配置提供数据支撑。方法 基于西安交通大学第一附属医院2025年1－3月的680 568条门诊有效处方数据，先通过K均值聚类

算法（K-means）与高斯混合模型（GMM）进行双聚类分析，结合轮廓系数择优确定取药时间差自适应阈值，以此划分“及时取药”与

“延迟取药”，构建二元目标变量；通过多方法融合的策略筛选六大类特征；从区分度、整体性能与校准度3个维度对6种基学习器

和4种集成学习模型进行性能评估，并开展模型解释性分析。结果 双聚类分析结果显示，GMM的轮廓系数优于K-means（0.702 4 

vs. 0.698 8），最终确定的自适应阈值为49.82 min。纳入处方中，有74.99% 的处方为及时取药，25.01% 为延迟取药。10个候选模

型中，堆叠集成（Stacking）模型表现最优，测试集曲线下面积为0.954 4、F1分数为0.942 4、准确率为0.911 5、Brier 分数为0.066，区

分度与校准度俱佳。模型解释性分析结果显示，模型的预测受患者历史行为、诊断相关特征等多因素共同驱动。结论 本研究构

建了基于两阶段自适应阈值集成学习算法的门诊患者及时取药预测模型，其精准度与稳定性较高，可实现对患者取药行为的动态

判定。
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Research on the timely medication retrieval prediction model for outpatients based on a two-stage adaptive 

threshold ensemble learning algorithm

FAN　Yuanyuan1， 2，WANG　Feng1，ZENG　Panke1，FENG　Weiyi1（1. Dept. of Pharmacy， the First Affiliated Hospital 

of Xi’an Jiaotong University， Xi’an 710061， China；2. Dept. of Pharmacy， Northwest Women’s and Children’s 
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ABSTRACT OBJECTIVE To construct a predictive model for timely medication retrieval of outpatients， accurately identify 

high-risk patients with delayed medication retrieval， and provide data support for the development of differentiated registration 

strategies and resource optimization allocation in smart pharmacies. METHODS Based on 680 568 valid outpatient prescription 

records from January to March 2025 at the First Affiliated Hospital of Xi’an Jiaotong University， a dual-clustering analysis was 

conducted using K-means algorithm and Gaussian mixture model （GMM）. An adaptive threshold for medication retrieval time 

difference was determined by combining contour coefficients， and “timely medication retrieval” and “delayed medication retrieval” 

were divided to construct binary objective variables； six types of features were screened through a multi-method fusion strategy； the 

performance of 6 kinds of base learners and 4 kinds of ensemble learning models were evaluated from three dimensions： 

discrimination， overall performance， and calibration， and explanatory analysis of the models were conducted. RESULTS The 

results of the dual-clustering analysis showed that the silhouette coefficient of GMM was better than K-means （0.702 4 vs. 0.698 

8）， and the final adaptive threshold was determined to be 49.82 min. Among the prescriptions included， 74.99% were for timely 

medication retrieval and 25.01% were for delayed medication retrieval. Among the 10 candidate models， the Stacking model 

performed the best， with an area under the test set curve of 0.954 4， F1 score of 0.942 4， accuracy of 0.911 5， Brier score of 

0.066， and good discrimination and calibration. The 

explanatory analysis results of the model showed that its 

predictions were driven by multiple factors such as patient 

historical behavior， and diagnostic related characteristics. 
CONCLUSION This study constructed a timely medication 

retrieval prediction model for outpatients based on a two-stage 

adaptive threshold ensemble learning algorithm， which has 
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high accuracy and stability， and can achieve dynamic judgment of patient medication retrieval behavior.

KEYWORDS outpatient prescription； timely medication retrieval prediction； cluster analysis； machine learning； ensemble 

learning

在现代医院管理体系中，门诊药房是衔接医嘱执行

与患者治疗的关键环节，其服务效率直接影响患者就医

体验和医疗流程的连贯性。随着门诊量持续增长、处方

结构日趋复杂以及患者取药行为差异扩大，门诊就医患

者多、取药等候时间长，已成为长期普遍存在的问题[1]。

医院普遍希望通过“报到”（即患者在取药前主动确认取

药意愿并进入调剂队列）来辅助药房进行调剂管理，以

减少资源浪费并提升流转效率。然而，在实际运行中，

“是否需要报到”及“哪些患者应报到”成为门诊药房面

临的突出难点[2―3]。

目前国内医院门诊药房主要存在两种取药模式：一

是全报到模式，即所有患者均须在取药前进行报到，该

模式能够减少部分患者因未及时取药造成的药品滞留

和调剂资源浪费，但会增加患者重复排队和等待的时间

成本，同时压缩药师可用于预调剂药品的时间窗口；二

是不报到模式，即默认患者会及时前来取药，缴费后药

师根据处方直接预调剂，无需患者确认，该模式尽管流

程简化，但若患者未及时取药，就可能存在浪费药师调

剂资源、增加待发药品管理成本、药品长期滞留药房的

情况，这不仅造成资源闲置或浪费，还存在药品过期、冷

藏药品室温暴露超时等安全隐患[4]。可见，如何精准识

别具有延迟取药风险的患者，并对其实施“选择性报到”

策略是在取药效率与患者就医体验之间取得平衡的

关键。

近年来，机器学习技术在医疗行为预测方面展现出

显著优势，其能够通过挖掘历史诊疗数据中的时序、交

互与行为模式，对患者行为进行前瞻性预测[5―6]。然而，

现有研究仍存在以下不足：（1）多数相关研究采用固定

时间（如 30、60 min）来界定是否“及时取药”[7―8]，忽略不

同医院门诊流量、诊疗流程及取药模式的差异性，难以

在不同医疗机构间泛化；（2）分析特征选择较单一，多集

中于患者基础信息和药品属性，未充分考虑科室-诊断、

科室-药品等跨维度交叉效应，限制了预测精度的提升。

为弥补上述不足，本研究构建了基于两阶段自适应阈值

集成学习算法的门诊患者及时取药预测模型，以精准识

别延迟取药高风险患者，从而为取药患者差异化报到策

略的制定与智慧药房资源优化配置提供数据支撑。

1　资料与方法
1.1　研究设计

本研究拟采用回顾性队列研究，基于西安交通大学

第一附属医院（以下简称“本院”）信息系统的门诊处方

与取药数据，构建基于两阶段自适应阈值集成学习算法

的机器学习预测模型。该模型包括两个阶段（流程见图

1）：第一阶段，阈值发现与数据标记；第二阶段，集成学

习与预测。本研究已获得本院医学伦理委员会批准（伦

理审批号 XJTU1AF2025LSYY-401），并遵循《世界医学

协会赫尔辛基宣言》。

1.2　数据来源

收集本院 2025 年 1－3 月门诊患者的电子处方记

录，纳入其中由门诊各科室开具且患者已完成缴费的处

方，处方需同时包含以下4条关键信息：（1）患者信息，包

括就诊科室、就诊号、处方号、患者姓名及主要诊断；（2）

药品信息，包括药品名称及数量；（3）缴费信息，包括缴

费方式与缴费时间；（4）取药信息，即发药时间。排除上

述关键信息任一字段缺失的处方记录。

1.3　编程工具

本研究采用 Python 3.9.12作为核心编程语言，依托

相关科学计算库（NumPy、Pandas、Scikit-learn、Matplot‐

lib）完成数据分析、模型构建与评估全过程，确保研究的

可重复性与扩展性。中央处理器为 Intel i9-13900K，图

形处理器（graphics processing unit，GPU）为 A6000 64 G，

运行内存为 64 GB，满足大规模数据集处理与复杂模型

训练需求。

1.4　主要方法

1.4.1　数据预处理

计算所有纳入处方的取药时间差（time_diff），即从

“缴费”到“发药”的时间（单位：min）。针对取药时间差

数据的极端值与右偏态分布特征，采用对数变换[log1p

（time_diff）]进行预处理，以提升聚类可分性。对取药时

间差＞360 min（结合本院业务经验，超过 360 min 的取

药行为多属于异常延迟）的数据进行极值上限缩尾法处

理，以减少极端值对聚类结果的干扰。

1.4.2　基于双聚类算法的取药时间差自适应阈值确定

分别采用 K-means 和 GMM 对取药时间差进行双聚

类分析，其中 K-means 通过识别距离聚类中心较近的簇

的最大值来确定阈值，GMM 通过均值较小的组件对应

的聚类边界来确定阈值。为评价两种聚类方法的区分

最终预测与报告

模型预测与评估

多策略集成学习

基学习器训练

特征工程构建与选择 

训练数据集构建

第二阶段：集成学习与预测第一阶段：阈值发现与数据标记

开始

数据导入

数据预处理

双聚类算法：Ｋ-Ｍeans 与 GMM

自适应阈值确定

监督标签构建

K-means：K均值聚类算法；GMM：高斯混合模型。

图1　基于两阶段自适应阈值集成学习算法的门诊患者

及时取药预测模型流程图
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能力，采用轮廓系数作为评价聚类效果的指标（取值范

围－1～1，数值越接近 1表示聚类越清晰），以轮廓系数

最高的模型作为最优聚类方案。依据最优聚类方案确

定最终的自适应阈值，从而将处方划分为“及时取药”与

“延迟取药”两类。

1.4.3　二元目标变量的监督标签构建

将上述聚类得到的自适应阈值回代至所有纳入处

方，进而明确定义二元目标变量。将取药时间差≤自适

应阈值的处方定义为“及时取药”处方，记为1；将取药时

间差＞自适应阈值的处方定义为“延迟取药”处方，记为

0。该监督标签即为本模型的目标变量。

1.4.4　训练数据集构建

在完成数据预处理并生成监督标签后，得到包含所

有特征变量与目标变量的数据集；将数据集按8∶2的比

例进行分层抽样（目的是保持及时取药率在训练集和测

试集中的一致性），划分为训练集和测试集，训练集用于

模型训练和特征选择，测试集用于最终性能评估。

1.4.5　预测模型特征工程构建与选择

为构建高质量的模型输入变量集合，本研究采用多

方法融合的特征选择策略，以确保最终特征子集在信息

量、稳定性以及预测性能之间取得最佳平衡：首先，使用

基于 F 统计量的 SelectKBest 特征算法筛选与目标变量

关联性较强的特征，再结合递归特征消除与交叉验证法

（recursive feature elimination with cross-validation，

RFECV）逐步剔除冗余特征，根据树模型输出的特征重

要性排序结果保留贡献度较高的特征，并通过5折交叉

验证法评估不同特征子集的建模效果以确定最优特征

组合。其次，在特征预处理方面，类别型特征根据具体

模型需求采用目标编码或独热编码进行转换；数值型特

征则进行标准化处理，以减少量纲差异对模型的影响，

从而提高模型训练的稳定性与预测准确性。

基于数据内在属性与业务逻辑，将特征划分为六大

类：（1）时间特征，包括缴费小时、缴费星期、缴费日、缴

费月等原始时间特征，是否为工作时间、是否为周末等二

分类特征，以及按时段划分的分类特征[上午（＞7：00～

12：00）、下午（＞12：00～18：00）、晚上（＞18：00～22：00）、

夜间（＞22：00至次日7：00）]。（2）患者行为特征，包括是

否为本院职工、就诊次数等基础行为特征，患者历史处

方数（指该患者过往处方记录的总行数，即所有处方明

细条目的累计数量；当一张处方包含多种药品时，其记

录行数会超过处方张数，可反映患者历史用药的复杂程

度）、患者历史总处方数（指经过处方号去重后的处方张

数，按就诊号聚合后对不同处方号计数，该特征不受包

含多行记录的单张处方的影响）、患者历史及时取药次

数、患者历史及时取药率等历史行为特征。（3）处方特

征，包括处方药品种类数、处方总金额、同处方数量等处

方特征，是否为复方药、药品频率（药品频率指药品名称

出现的次数）、药品编码等药品特征，以及具体缴费方式

等缴费特征。（4）科室特征，包括科室编码、科室名称（按

业务属性分为内科、外科、妇儿科、专科等）等科室基础

信息特征，以及科室及时取药率、科室处方数、科室工作

量等科室行为统计特征。（5）诊断特征，包括诊断编码、

诊断类型等分类特征，以及诊断类及时取药率、诊断类

处方数等统计特征。（6）交叉特征，该类特征为捕捉多因

素交互效应而设，采用目标编码构建组合特征，包括科

室_诊断_及时取药率（即特定科室-诊断组合的历史及

时取药率，以下类同）、科室_药品_及时取药率、时段_科

室_及时取药率、科室_药品频率_及时取药率等。基于

上述多方法融合的特征选择结果，对排名前20位的核心

特征按重要性得分进行可视化呈现，直观识别影响患者

及时取药行为的关键预测因子，为后续模型解释性分析

与临床精准干预策略制定提供聚焦方向。

1.4.6　模型构建与训练 

在确定的自适应阈值与监督标签基础上，本研究利

用 6种基学习器和 4种集成学习来构建模型。其中，传

统机器学习算法包括随机森林（Random Forest）、梯度提

升决策树（Gradient Boosting Decision Tree，GBDT）与自

适应提升（AdaBoost）；先进梯度提升算法包括采用 GPU

加速的极端梯度提升（XGBoost）、基于叶子节点优化的

轻量级梯度提升（LightGBM）、专门针对类别型特征处

理的类别提升（CatBoost）；多策略集成学习包括加权投

票（Weighted Voting）、堆 叠 集 成（Stacking）、混 合 集 成

（Blending）与简单平均集成（Simple Averaging）。

为提升模型性能，采用智能框架 Optuna 执行贝叶斯

超参数优化：采用 TPE（一种基于树结构的贝叶斯优化

算法）采样器，配合 Median Pruner 剪枝器自动终止表现

不佳的试验，每个模型均进行100次优化试验，并采用3

折交叉验证超参数组合的泛化性能，优化目标为曲线下

面积（area under the curve，AUC）。

1.4.7　模型性能评估

本研究从区分度、整体性能与校准度3个维度，对候

选模型及其集成模型开展系统评价，旨在全面衡量模型

预测能力的稳健性与可靠性：（1）区分度方面，采用受试

者 工 作 特 征（receiver operating characteristic，ROC）的

AUC 作为核心指标，量化模型在不同决策阈值下对“及

时取药”与“延迟取药”两类样本的区分效能。（2）整体性

能方面，针对类别不平衡场景，采用“准确率、精确率、召

回率、F1分数”的组合评价方法。其中，准确率反映模型

整体预测正确率；精确率聚焦“预测为某类的样本中实

际为该类的比例”，用于衡量预测结果的准确性；召回率

聚焦“实际为某类的样本中被正确预测的比例”，用于衡

量模型对目标类别的覆盖能力；F1分数则通过调和平均

精确率与召回率用于综合平衡二者的表现，避免单一指

标导致的评价偏差。（3）校准度方面，采用 Brier 分数量化

预测概率与实际发生概率的偏差程度，同时借助校准曲

线对模型在各概率区间的拟合一致性进行可视化。所
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有指标均使用 Python 的 Scikit-learn 工具包进行计算，并

在测试集上完成，确保评价结果的可靠性与可复现性。

1.4.8　模型解释性分析

在模型性能评估的基础上，本研究进一步开展模型

解释性分析，以揭示预测结果的关键预测因子并验证模

型决策逻辑的合理性。解释性分析主要包括两部分内

容：模型整体区分能力的可视化呈现以及特征贡献度的

量化解释。首先，通过混淆矩阵展示最佳模型在测试集

上的分类结果，明确真阳性（true positive，TP）、真阴性

（true negative，TN）、假阳性（false positive，FP）、假阴性

（false negative，FN）的数量及比例，用于识别模型分类误

差的主要来源。同时，绘制多模型 ROC 曲线，以比较其

区分效能的差异，借助模型校准曲线的可视化分析，验

证模型决策结果的可靠性。其次，采用基于博弈论原理

的 沙 普 利 加 性 解 释（Shapley additive explanations，

SHAP）方法，分解各特征对预测结果的贡献度，既提供

单样本的局部解释（如“历史及时取药率高”对“及时取

药”预测的正向贡献），又通过汇总全局 SHAP 值揭示特

征的正负向作用及强度。特征重要性摘要图（反映特征

重要性排序及特征值与预测结果的正负相关性）以条形

图形式展示特征贡献优先级，以突出关键预测因子。

2　结果
2.1　纳入数据基本情况

本研究纳入本院2025年1－3月门诊患者的电子处

方数据680 568条，经数据清洗和预处理后，最终分析数

据集包含680 568条有效记录，满足统计分析要求。

2.2　基于双聚类算法的取药时间差自适应阈值结果

K-means 聚类分析结果显示，簇中心分别为 9.26、

175.53 min，代表两个簇内样本取药时间差的集中趋势

（图2A）。GMM 聚类分析结果显示，两个高斯分布成分

可有效拟合样本数据的分布特征，二者的概率密度函数

分别对应“及时取药”（取药时间差小）、“延迟取药”（取

药时间差呈长尾分布）的特征（图2B）。聚类效果对比结

果显示，GMM 聚类的轮廓系数（0.702 4）优于 K-means

（0.698 8），因此，选择 GMM 聚类确定取药时间差的自适

应阈值。对纳入处方的患者取药时间差进行数据分布

分析，结果（图 3）显示，数据呈显著右偏态分布，中位数

（13.08 min）远低于平均值（69.36 min），标准差为117.96 

min，提示大部分患者很快取药，但少数患者极晚取药把

分布拖出长尾，因此均值被少数极端值抬高，均值不能

代表“典型”行为。由 GMM 聚类分析结果可知，模型识

别出的自适应阈值为49.82 min、中位数为13.08 min（图

3），该阈值代表了两个核心用户群体的自然分界点，轮

廓系数为0.702 4，表明聚类结果具有较高的内部一致性

和簇间分离度。

2.3　二元目标变量的监督标签构建结果

将自适应阈值49.82 min 回代至所有纳入处方后，有

510 380 条（74.99%）处方的取药行为属于“及时取药”

（取 药 时 间 差 ≤49.82 min），记 为 1；有 170 188 条

（25.01%）处方的取药行为属于“延迟取药”（取药时间

差＞49.82 min），记为0。

2.4　训练数据集构建结果

将数据集分为训练集（544 454条）和测试集（136 114

条），确保两组数据在目标变量（及时取药/延迟取药）的

分布上保持一致。

2.5　特征工程选择结果

本研究通过特征工程生成28个初始特征，并挖掘特

征交互关系构建交叉特征后生成35个衍生特征，最终得

到 63个特征。采用 RFECV 进行特征筛选，结果（图 4）

表明，重要性得分排序前5位的特征依次为患者历史及

时取药率（0.258 2分）、科室_诊断_及时取药率（0.094 4

分）、患者历史及时取药次数（0.085 7分）、科室_药品_及

时取药率（0.081 4 分）、科室_药品频率_及时取药率

（0.062 1分）。可见，患者历史行为特征占预测主导地

位，重要性得分排名前 3位的特征有 2个均与此相关；4

个交叉特征（科室-诊断组合、科室-药品组合、科室-药品

频率组合、时段-科室组合）进入排名前5位，充分体现了

医疗场景中多维度因素交互作用的复杂性及其关键作

用；缴费日、缴费小时等时间特征虽未占据核心位置，但

仍展现出一定的预测价值；此外，多个科室特征（科室及

时取药率等）表现突出，也反映出不同医疗服务差异所

带来的重要影响。
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2.6　模型性能评估结果

在独立测试集上，基于 Optuna 进行超参数优化的 6

种基学习器及4种集成学习算法均获得了较好的预测效

果（表1），其中 Stacking 模型表现最佳，在区分度与校准

度方面均取得最优结果，其 AUC 为 0.954 4，准确率为

0.911 5，F1分数为 0.942 4，明显优于其他模型。在预测

概率的校准度方面，Stacking 模型的 Brier 分数为 0.066，

是所有模型中最低的，表明其概率输出最为稳定、可信。

综上，Stacking 模型在本研究任务中展现出最强的预测

性能，可作为门诊处方及时取药预测的首选模型。

2.7　模型解释性评估结果

通过构建 Stacking 模型在测试集（136 114条）上的

混淆矩阵，结果显示，TN 为25 491条，FP 为8 547条，FN

为 3 504 条 ，TP 为 98 572 条 ，最 终 计 算 出 灵 敏 度 为

96.57%，特异度为 74.89%，表明该模型具有较高的可靠

性。结果见图5A。

模型 ROC 曲线比较结果显示，Stacking 模型的 ROC

曲线最接近左上角，AUC 达到0.954 4，其他集成模型的

ROC 曲线也表现出一定优异的区分能力，模型之间的性

能差异在 ROC 曲线上清晰可见。结果见图5B。

模型校准曲线结果显示，Stacking 模型概率均值为

0.749 5，方差为 0.121 9，分布两端更分离，信息量更大，

与最佳区分度一致，表明模型整体校准良好，预测概率

与实际发生概率最接近对角线。结果见图5C。
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表1　10种模型在测试集上的性能评估结果

模型名称
Stacking

Random Forest

Blending

Weighted Voting

Simple Averaging

GBDT

XGBoost

LightGBM

CatBoost

AdaBoost

准确率
0.911 5

0.900 9

0.909 6

0.906 1

0.906 0

0.896 1

0.905 9

0.903 6

0.909 1

0.884 7

精确率
0.920 2

0.904 4

0.918 7

0.911 4

0.911 4

0.904 4

0.913 7

0.911 9

0.916 5

0.896 5

召回率
0.965 7

0.970 4

0.964 8

0.968 9

0.968 9

0.963 2

0.965 7

0.964 6

0.967 0

0.956 7

F1 分数
0.942 4

0.936 3

0.941 2

0.939 3

0.939 3

0.932 9

0.939 0

0.937 5

0.941 0

0.925 6

AUC

0.954 4

0.947 9

0.953 7

0.952 1

0.952 1

0.943 4

0.951 5

0.949 7

0.952 8

0.931 2

Brier 分数
0.066

0.073

0.068
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0.075
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图5　模型解释性评估结果
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Stacking 模型 SHAP 特征重要性摘要图（图5D）结果

显示：（1）整体而言，模型的预测主要受患者历史行为、

诊断相关特征以及时间等多因素共同驱动，但历史行为

变量占据主导地位，“患者历史及时取药率”贡献度最

高，数值高时更易预测为“及时取药”、数值低时则更易

预测为“延迟取药”，印证历史取药习惯是核心预测依

据，“患者历史及时取药次数”“患者历史处方次数”也能

说明历史数据的预测价值；（2）各类诊断特征（如“诊断

编码”“诊断及时取药率”“诊断类型及时取药率”等）整

体重要性位居前列，当诊断维度的及时取药率较高时，

提示与特定疾病类别相关的既往行为模式会影响患者

本次的取药决策；（3）“药品编码”“药品及时取药率”等

药品相关特征同样具有较高贡献，尤其是药品及时取药

率，数值高时说明患者取药行为与特定的药品类别存在

关联；（4）“缴费小时”“处方药品种类数”等特征的重要

性相对居中，但也有一定规律（比如部分时段缴费的患

者，取药可能更易延迟）。综上，模型主要依据患者过去

的取药行为进行判断，同时也会考虑就诊科室环境和就

诊时间等因素，这与实际临床情况相符，表明模型可信

度良好。

3　讨论
本研究构建的两阶段自适应阈值集成学习算法模

型在门诊患者及时取药预测任务中表现出显著优势，为

门诊药房患者报到的智能化管理提供了科学依据。通

过预测患者是否会及时取药，可实现差异化的药房服务

策略：对预测为“延迟取药”的患者要求报到后再进行预

摆药，从而减少调剂资源的浪费；对预测为“及时取药”

的患者，可启动提前预摆药与优先调剂机制，进一步缩

短患者取药等候时长，提升门诊药房的服务效率与患者

就医体验。

3.1　算法优势

本研究提出两阶段自适应阈值集成学习算法，有效

克服了传统机器学习模型在医疗非平衡数据处理中常

见的阈值固定化的局限。该算法通过“双聚类-阈值自

适应”两阶段设计，在第一阶段通过双聚类分析构建客

观的行为分界点，确立自适应阈值；在第二阶段，则引入

自适应阈值调整机制动态优化分类边界，使模型能更精

准地捕捉患者门诊取药的行为特征。相较于“先平衡后

分类”理念，本研究进一步通过动态阈值强化了对个体

行为差异的适应性[9]。樊丽娟等[10]采用 Random Forest 模

型预测处方合理性虽获得0.90的特异度，但因固定阈值

设置导致敏感度受到限制。本研究基于680 568条三甲

医院真实处方数据，采用 Stacking 模型实现了高精度预

测（AUC＝0.954 4，F1 分数＝0.942 4），并界定了 49.82 

min 的取药时间差自适应阈值，为智慧药学服务提供了

更加可靠的行为判定依据。这一算法创新性将集成学

习由传统的静态风险预测扩展至动态行为决策，通过对

实时临床环境与患者行为变化的敏感响应，使得对患者

取药行为的判定更贴合医院运营实际，避免了固定阈值

带来的临床误判与资源错配。

3.2　双聚类对比分析的优势

本研究基于 K-means 与 GMM 双聚类对比，采用轮

廓系数进行客观择优（GMM 聚类和 K-means 聚类的轮

廓系数分别为 0.702 4、0.698 8），最终确定 49.82 min 为

及时/延迟取药的自然分界点。相较于既往研究中常用

的 30、60 min 的人工设定阈值，双聚类方法充分考虑了

门诊不同时段的患者量波动、科室及药品类型差异，可

有效减少固定阈值带来的错误分类[8]。GMM 聚类通过

概率分布拟合人群的内在行为结构确定阈值，形成

74.99%（510 380 条）的及时取药率与 25.01%（170 188

条）的延迟取药率分布，与三甲医院门诊运营特性高度

一致[11]，为目标变量构建提供了科学、客观的依据。这

一阈值确定方式让及时/延迟取药的界定更具临床适配

性，避免了“一刀切”标准导致的患者体验下降或资源浪

费，为后续差异化策略落地奠定了客观基础。

3.3　集成学习的优势

研究结果显示，Stacking 模型在所有关键指标上均

表现最佳（准确率为 0.911 5，F1分数为 0.942 4，AUC 为

0.954 4），优于单一机器学习模型（如 XGBoost 的 AUC

为0.951 5）及其他集成学习模型（如 Blending 的 AUC 为

0.953 7）。Stacking 模型的两层结构通过融合多种基学

习器（如 Random Forest 的稳健性、XGBoost 的非线性拟

合能力等）有效降低了模型的偏差与方差[12―13]，进而提

高了对不同类型患者（特别是首次就诊者）的预测稳定

性；Optuna 又基于 TPE 采样与 Median Pruner 剪枝器的

超参数优化进一步提升模型泛化能力，使 Stacking 模型

表现出更优的概率校准性（Brier 分数为0.066）。本研究

中，延迟取药率为 25.01%，意味着传统预摆药模式中约

1/4的调剂工作可能无效。利用预测模型实施智能化报

到策略，可减少无效调剂、人力浪费及药品反复入库，改

善高峰期药房负荷，同时以高召回率精准识别高风险患

者，在效率与患者体验之间实现优化平衡[14]。该集成学

习框架突破了单一模型在复杂医疗场景中易受噪声与

类别不平衡影响的性能瓶颈，且实现了预测模型与门诊

药房实际流程的无缝连接，其高精准度与高稳定性确保

了技术方案在临床真实运行环境中的可落地性，直接助

力药房运营效率提升与管理成本降低。

3.4　特征体系的优势

本研究构建了涵盖患者时间、行为、处方、科室、诊

断以及交叉特征的多维特征体系，又与 SHAP 分析深度

联动，不仅精准揭示了门诊取药行为的多维度驱动机

制，更为药事管理提供了可直接落地的精细化干预靶

点。从特征重要性来看，患者历史行为特征占绝对主导

地位，这与药学领域“患者依从性惯性理论”高度契

合 [15]，既往取药及时的患者更易形成“缴费后立即取药”

的行为习惯，而反复延迟的患者多存在行为偏差（如依
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托职工健康管理中心集中取药）或流程特殊性（如部分

检查预约当天统一取药），对于这类患者需要针对性地

提供引导服务。此外，相关研究证实，患者历史处方数

对及时取药率存在显著正向影响，处方数较多的患者延

迟风险更低，这为医院设计“患者专属引导服务”（如长

期用药患者的取药路径简化）提供了数据支撑[16]。值得

注意的是，有4个交叉特征进入了特征重要性得分前10

名（如科室_诊断_及时取药率的特征重要性得分为

0.094 4，科室_药品_及时取药率的特征重要性得分为

0.081 4），有效填补了既往研究仅关注单一维度、忽略多

因素交互效应的空白，为按场景定制取药患者报到策略

奠定了基础。

基于上述特征机制揭示的关键差异，医疗机构可进

一步制定精准的分层药事服务优化策略，并通过系统化

落地实现研究结果向临床实践转化。在科室层面，可依

据不同科室就诊患者延迟取药率的显著差异实施差异

化管理：对高风险科室（如医学影像科门诊、麻醉科门

诊），建议对所有就诊患者实施强制报到策略，避免药品

调剂后因患者延迟取药导致滞留；对中风险科室，可依

托模型实时预测结果实施选择性报到，在控制风险的同

时减少不必要的流程干预；对低风险科室，则可维持传

统预摆药模式，缩短患者等候时间，保障取药效率。在

药品管理层面，可针对不同类型药品的特性优化流程：

造影剂（碘克沙醇、碘佛醇等）和检查用药是延迟取药的

高发品类，这类药品因使用时间与检查预约绑定，患者

对取药时间的控制能力弱且药品成本较高，建议实施强

制报到策略，即患者需在检查前通过报到机确认后，药

师再启动调剂流程；而慢性病常用药物（如治疗冠心病

的阿司匹林、治疗睡眠障碍的氯硝西泮等）因及时取药

率为89%～92%，可维持预摆药模式，但需结合患者历史

及时取药率等行为特征进行个性化调整。在实施路径

上，可将预测模型无缝集成至报到机系统或处方分配系

统，构建“患者缴费时自动触发实时预测-依据预测结果

智能分流至对应取药流程-结合实际取药行为持续优化

模型参数”的闭环管理模式。同时，同步优化报到机工

作流程：高风险患者遵循“缴费→报到→调剂→取药”流

程，低风险患者可实行“缴费→调剂→取药”简化流程，

中风险患者则根据实时预测结果动态分配，最终实现药

事服务资源的精准配置与患者取药体验的双重提升[17]。

本研究也存在一定局限性：本研究数据来源于单中

心三甲医院，虽然具有一定代表性，但仍可能存在地域、

患者结构和科室设置等方面的偏倚，未来需开展多中心

验证研究，以进一步评估模型的普适性和泛化能力。此

外，本研究未纳入患者主观因素（如取药意愿、时间敏感

性等），这些因素可能对取药及时性产生重要影响，后续

可结合患者问卷纳入患者行为与心理特征，以提升模型

的完整性和解释力。
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