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Advances in the application of machine learning in the prediction of adverse drug reactions
XU Mengjia"*, SONG Lin', YANG Tingting"*, HUANG Chenrong" *(1. Dept. of Pharmacy, the First Affiliated
Hospital of Soochow University, Jiangsu Suzhou 215006, China; 2. College of Pharmaceutical Sciences,

Soochow University, Jiangsu Suzhou 215100, China)

ABSTRACT Adverse drug reactions (ADRs) refer to harmful or unintended reactions unrelated to the intended purpose of
medication administration, which can lead to various issues such as accelerated disease progression and prolonged hospitalization.
Traditional ADRs monitoring systems (such as spontaneous reporting systems) suffer from limitations such as low reporting rates
and inconsistent data quality, which hinder the early prevention and control of ADRs. With the rapid development of information
technology, machine learning has emerged as a powerful tool for management and decision-making of ADRs by leveraging its
strengths in feature extraction and dynamic temporal pattern analysis. By reviewing relevant literature at home and abroad in recent
years, this paper summarizes the progress in the application of machine learning for ADRs prediction. It is found that machine
learning has gradually been applied to the early warning and risk prediction of ADRs in target organs such as the kidneys, liver,
heart and bone marrow (such as acute kidney injury, drug-induced liver injury, and so on). Although machine learning
demonstrates significant application potential in the field of ADRs prediction, it still faces limitations such as inadequate quality
control of clinical data, lack of standardized criteria for model performance evaluation, insufficient model interpretability and
difficulties in clinical translation. In the future, the development trend of machine learning in the field of ADRs prediction should
follow a “technology-validation-integration” pathway to systematically promote the practical implementation of models.

KEYWORDS machine learning; adverse drug reactions; prediction; drug safety; pharmacovigilance
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