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摘 要 药物不良反应（ADRs）是药物出现有害的或与用药目的无关的反应，可导致疾病进程加快、患者住院时间延长等诸多问

题。传统 ADRs 监测（如自发呈报系统）存在上报率低、数据质量参差不齐等问题，这制约了 ADRs 的早期防控。随着信息技术的

飞速发展，机器学习凭借其强大的特征挖掘能力和动态时序分析能力，为临床 ADRs 的管理与决策提供了强有力的支持。本文通

过梳理近年来国内外的相关文献，对机器学习在 ADRs 预测中的应用进展进行了归纳总结。结果显示，机器学习已逐渐应用于肾

脏、肝脏、心脏及骨髓等靶器官 ADRs（如急性肾损伤、药物性肝损伤等）的早期预警和风险预测；虽然机器学习在 ADRs 预测领域

表现出巨大的应用潜力，但是仍存在临床数据质量控制不足、模型性能评价标准缺失、模型可解释性不足与临床转化困难等局限。

未来，机器学习在ADRs预测领域的发展趋势应遵循“技术-验证-整合”途径，系统性地推动模型落地。
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Advances in the application of machine learning in the prediction of adverse drug reactions

XU　Mengjia1， 2，SONG　Lin1，YANG　Tingting1， 2，HUANG　Chenrong1， 2（1. Dept. of Pharmacy， the First Affiliated 

Hospital of Soochow University， Jiangsu Suzhou 215006， China；2. College of Pharmaceutical Sciences， 

Soochow University， Jiangsu Suzhou 215100， China）

ABSTRACT Adverse drug reactions （ADRs） refer to harmful or unintended reactions unrelated to the intended purpose of 

medication administration， which can lead to various issues such as accelerated disease progression and prolonged hospitalization. 

Traditional ADRs monitoring systems （such as spontaneous reporting systems） suffer from limitations such as low reporting rates 

and inconsistent data quality， which hinder the early prevention and control of ADRs. With the rapid development of information 

technology， machine learning has emerged as a powerful tool for management and decision-making of ADRs by leveraging its 

strengths in feature extraction and dynamic temporal pattern analysis. By reviewing relevant literature at home and abroad in recent 

years， this paper summarizes the progress in the application of machine learning for ADRs prediction. It is found that machine 

learning has gradually been applied to the early warning and risk prediction of ADRs in target organs such as the kidneys， liver， 

heart and bone marrow （such as acute kidney injury， drug-induced liver injury， and so on）. Although machine learning 

demonstrates significant application potential in the field of ADRs prediction， it still faces limitations such as inadequate quality 

control of clinical data， lack of standardized criteria for model performance evaluation， insufficient model interpretability and 

difficulties in clinical translation. In the future， the development trend of machine learning in the field of ADRs prediction should 

follow a “technology-validation-integration” pathway to systematically promote the practical implementation of models.
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根据世界卫生组织国际药物监测合作中心规定，药

物不良反应（adverse drug reactions，ADRs）是指以正常

剂量药物用于预防、诊断、治疗疾病或调节生理机能时

所出现的有害的或与用药目的无关的反应[1]。1999－

2024年，我国 ADRs 报告累计2 587.2万份，其中2024年

国家 ADRs 监测系统收到新的、严重的 ADRs/不良事件

报告达90.9万份，较2023年同比增长9.1%[2]。在此背景

下，ADRs 所导致的公共卫生问题日益凸显，引发了一系

列复杂的临床问题，也增加了医疗成本[3]。

自发呈报系统是目前我国广泛使用的 ADRs 监测体

系，该系统能够覆盖广泛的用药人群，并在真实世界中
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收集 ADRs 数据，有助于发现罕见的或长期用药后才出

现的 ADRs 信号。然而，该系统存在上报率低、数据质量

参差不齐等问题[4]。研究表明，严重程度较轻、症状不典

型的 ADRs 容易被漏报[5]。此外，传统的人工观察和治

疗药物监测（therapeutic drug monitoring，TDM）虽然能

提供更为直接的临床或实验室证据，但其主观性、滞后

性仍制约了 ADRs 的早期防控。

近年来，随着信息技术的飞速发展，医疗领域逐步

建立并规范了电子病历系统。面对海量临床数据，机器

学习可从电子病历、实验室检测结果、药物处方等信息

中识别潜在的 ADRs 信号，并深入挖掘患者复杂的临床

特征及用药规律。这意味着机器学习能对患者的诊疗

信息进行实时监测，在 ADRs 发生的早期发出预警，大幅

缩短监测周期[6]。同时，机器学习由于具有客观性强、一

致性好且不易受人为因素干扰的优势，其较传统监测方

法能更准确地识别 ADRs，为临床 ADRs 的管理与决策

提供了强有力的支持[7]。基于此，本文通过梳理近年来

国内外的相关文献，对机器学习在 ADRs 预测中的应用

进展进行综述，以期为 ADRs 相关工作的开展及临床个

体化用药的完善提供参考。

1　机器学习的概述

根据学习方式的不同，机器学习可被分为监督学

习、无监督学习和半监督学习等[8]。在 ADRs 预测领域，

集成学习算法凭借其对高维度、不平衡的临床数据的高

效处理能力，可实现对临床多源异构数据的整合、ADRs

关键特征的提取以及高精度预测模型的开发[9]；深度学

习可对电子病历中的动态时序特征进行挖掘，捕捉

ADRs 与临床特征和用药规律之间的复杂非线性关

系[10]；可解释性人工智能技术（explainable artificial intel‐

ligence，XAI）可揭示预测模型的决策依据，增强预测模

型结果在临床实践中的可信度与实用性[11]；这些机器学

习方法为 ADRs 的预测研究奠定了坚实的基础。

2　机器学习在不同靶器官ADRs预测中的应用

在 ADRs 预测研究中，机器学习通常遵循数据集构

建、特征筛选、模型开发验证及临床解释这一标准流程。

机器学习在不同靶器官 ADRs 预测中，主要依赖于从临

床数据中提取复杂非线性关系以构建预测模型，利用高

效处理能力筛选与 ADRs 相关的关键特征，通过集成学

习、深度学习等优化模型结构。然而，机器学习在不同

靶器官 ADRs 预测中仍存在一定差异：（1）不同靶器官

ADRs 预测模型依赖于相应靶器官的可量化生物标志

物，如对肾脏 ADRs 需关注血肌酐的变化，对心脏 ADRs

需融合心电图等多模态数据。（2）不同靶器官 ADRs 预测

模型的最优算法根据临床应用场景的不同也存在差异，

如对于特征维度较高的预测任务，梯度提升决策树模型

表现优异[9]；对于需要融合多模态数据的复杂任务，图神

经网络等模型则具有更稳健的预测性能[10]；对于严重的

ADRs，XAI 可明确 ADRs 的风险因素、提升预测模型的

临床解释能力[11]。此外，在临床转化层面，不同靶器官

ADRs 预测模型也面临不同挑战：肾脏与肝脏 ADRs 预

测模型需要解决的难点在于如何从多病因中识别此类

ADRs 是否为药物源性；心脏、骨髓 ADRs 因其进展迅

速，对预测模型的时效性提出了更高的要求；一些罕见

且严重的 ADRs 则需要解决小样本量带来的拟合度高、

泛化能力差等问题。基于此，笔者将围绕不同靶器官

ADRs 预测模型的方法学特征与临床转化挑战，对现有

研究进展进行梳理和归纳总结。

2.1　肾脏ADRs预测

急性肾损伤（acute kidney injury，AKI）是一种以肾

脏排泄功能在数小时至数天内丧失为核心，以水-电解

质、酸-碱平衡紊乱为特征的临床综合征[12]。当前，临床

对 AKI 的监测主要依赖于人工驱动的多级体系，包括基

于自发呈报系统的被动病例上报、血肌酐水平及尿量的

动态监测以及电子病历的阈值预警机制等。然而，上述

体系仍存在一定局限性：一方面，自发呈报系统的高漏

报率易导致 ADRs 信号捕获延迟；另一方面，传统肾损伤

的生物标志物浓度通常需在肾功能下降幅度为 25%～

50% 时，才会发生具有临床诊断意义的显著改变。因

此，探索可突破自发呈报系统漏报局限、克服传统生物

标志物检测滞后性的早期预测方法，已成为临床亟待解

决的关键问题。

目前，已有多项研究利用机器学习开发了 AKI 预测

模型，如 Kim 等[13]利用逻辑回归方法构建了万古霉素相

关 AKI 的风险评分系统；Yang 等[14]利用梯度提升机算法

实现了对患者异常血肌酐水平（血肌酐水平升高可提示

AKI）的早期预测；Zhang 等[15] 利用极端梯度提升（ex‐

treme gradient boosting，XGBoost）和梯度提升机算法分

别预测了阿米卡星和依替米星相关的 AKI 风险。值得

注意的是，AKI 预测模型的性能优化不仅依赖于算法的

选择，还与特征工程的处理和质量的把控密切相关，高

质量的特征工程处理是提高模型泛化能力和临床解释

能力的关键。Huang 等[16]研究证实，包含多组学特征的

人工神经网络模型对铂类药物肾毒性的预测性能最优，

受试者工作曲线下面积（area under the receiver operating 

characteristic curve，AUROC）为 0.91；Yu 等[17]研究发现，

在免疫抑制剂相关 AKI 预测模型中，纳入16个关键特征

的 简 化 模 型 较 包 含 38 个 因 子 的 复 杂 模 型 表 现 更 优

（AUROC 提升 7.2%）；Miao 等[18]利用机器学习明确了患

者的基线肾功能水平是其接受心脏手术后非甾体抗炎

药相关 AKI 预测的关键特征，并解释了该特征的临床重
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要性。总体而言，AKI 预测模型正从单一算法向融合多

组学特征的方向演进。

2.2　肝脏ADRs预测

药物性肝损伤（drug-induced liver injury，DILI）作为

药物临床应用过程中备受关注的 ADRs，直接影响了临

床试验受试者的安全性和试验结果的可靠性，与临床决

策和患者用药风险密切相关。目前，我国 DILI 的年发生

率为0.023 8%，高于西方国家报道的0.001%～0.02%[19]。

DILI 的诊断主要依赖于对患者用药史的回顾性分析和

其他致肝损伤原因（如病毒性肝炎等）的排除，这存在一

定局限性，因此利用机器学习构建预测模型为早期识别

和预防 DILI 提供了一种新手段。

He 等[20]将临床特征（如年龄、白蛋白水平、间接胆红

素水平等）与基因组学相结合，采用岭回归算法构建了

高剂量甲氨蝶呤致急性淋巴细胞白血病儿童肝损伤的

风险评分模型，该模型为 DILI 的精准预测提供了重要的

方法学参考。Han 等[21]探索了多种酪氨酸激酶抑制剂

（tyrosine kinase inhibitor，TKI）相关 DILI 的发生风险，并

对研究数据进行整合，再利用逻辑回归、弹性网络和随

机森林等机器学习方法开发了基于风险评分的 TKI 相

关 DILI 预测模型，实现了多种模型架构的对比和探索。

Zeng 等[22]利用自动化机器学习构建了梯度提升机模型，

该模型成功预测了抗结核药物相关 DILI 的发生风险。

DILI 病因复杂，临床决策将直接影响患者预后，因

而临床上对 DILI 预测模型的可解释性要求相对较高。

如 Xiao 等[23]通过结核病相关 DILI 可解释性预测模型阐

述了 DILI 的发生与患者既往肝脏相关疾病史（如药物性

肝炎、脂肪性肝病）、年龄、谷丙转氨酶和总胆红素水平

高度相关。总体而言，机器学习多种算法的整合、临床

可解释性的增强推动了 DILI 预测模型从算法创新向临

床应用的转化，可为不同药物类型、不同人群的 DILI 风

险管控提供循证支持。

2.3　心脏ADRs预测

心脏 ADRs 是抗肿瘤药物的常见副作用（如心肌病

等），发生率高达20%，能够导致恶性肿瘤患者过早死亡

或其他不良临床结局的发生[24]。因此，早期预测心脏

ADRs 对改善患者临床结局、提高患者生活质量具有重

要意义。

在心脏 ADRs 预测中，研究者最初聚焦于传统化疗

药物的预测，关注数据多样性对预测模型精度的影响。

Chaix 等[25]和 Öztürk 等[26]分别通过融合多组学特征和多

模态数据，开发了蒽环类化疗药物相关心脏 ADRs 预测

模型和非蒽环类化疗药物相关心脏 ADRs 评分系统

“CardTox-Score”。Li 等[27]通过比较 XGBoost、随机森林

和逻辑回归 3种算法的性能，最终选择 XGBoost 算法对

结直肠癌患者使用氟嘧啶后30 d 内心脏 ADRs 的发生情

况进行预测。另有研究基于乳腺癌患者对多种算法（如

支持向量机、多层感知机、随机森林等）进行了比较，最

终确定了随机森林模型在蒽环类化疗药物相关心电图

异常预测中的应用优势[28]。严重心脏 ADRs 受患者身体

情况、治疗方案的影响较大，因而其预测多聚焦于特定

药物[25]或特定人群[27]，这也使得此类研究受到样本量较

小的制约，从而出现模型过拟合风险高、泛化能力差、难

以发现特异性生物标志物等问题。为解决该问题，

Heilbroner 等[29]利用 CancerLinQ 数据库中接受程序性死

亡受体 1、程序性死亡受体配体 1抑制剂治疗的恶性肿

瘤患者的临床数据，建立了具有良好预测性能的心脏

ADRs 预测模型（AUROC 为 0.65）；Araújo 等[30]采用数据

增强与平滑技术合成数据，成功构建了多柔比星相关心

脏 ADRs 的高精度预测模型（AUROC 为 0.85）。总体而

言，机器学习能够实现心脏 ADRs 的早期预警，为恶性肿

瘤治疗期间心脏安全性个性化管理奠定了重要基础。

2.4　骨髓ADRs预测

骨髓 ADRs 指化疗、放疗等多种因素导致的骨髓造

血功能下降，具体表现为外周血中1种或多种血细胞（红

细胞、白细胞、血小板等）数量减少；骨髓 ADRs 不仅会导

致患者出现乏力等症状，还会增加患者的感染风险和出

血倾向，从而使得既定抗肿瘤治疗中断或减量，最终影

响患者的长期生存获益[31]。目前，骨髓 ADRs 的监测主

要依赖于定期血常规检查和治疗过程中的临床症状观

察，但易受早期特异性信号难捕捉、不同药物骨髓 ADRs

异质性强等影响，导致传统监测方法难以实现个体化风

险评估。因此，开发可预测骨髓 ADRs 发生风险的模型

具有重要临床价值。

在骨髓 ADRs 预测中，部分研究聚焦于特定药物的

靶向毒性预测。如刘阳等[32]采用 XGBoost 算法对多柔

比星联合环磷酰胺序贯多西他赛治疗乳腺癌所导致的

骨髓 ADRs 实现了高精度的预测（AUROC 为0.94）；Jiang

等[33]基于白细胞、血小板计数等关键特征，采用 XGBoost

算法预测布鲁顿酪氨酸激酶抑制剂相关严重血液毒

性的发生风险（真阴性率为 0.913）；Van Dung 等[34]利用

轻量级梯度提升机算法开发了万古霉素、氯吡格雷等药

物诱导免疫性血小板减少症的风险预测模型（AUROC

为 0.81）。由于骨髓 ADRs 预测模型高度依赖于动态时

序变化的数据，且与感染等严重并发症密切相关，因此

这类模型开发时需重点关注临床数据中的时序依赖关

系以及并发症的发生风险。基于此，Shibahara 等[35]开发

了一种基于加权支持向量机的机器学习算法，可对接受

尼莫司汀治疗的脑肿瘤患者的骨髓 ADRs 严重程度进行

预测；Lavieri 等[36]利用多元混合泊松回归算法建立了基



· 108 ·  China Pharmacy  2026 Vol. 37  No. 1 中国药房  2026年第37卷第1期

于化疗强度、诊断时间等特征的风险评分模型，该模型

可准确预测儿科患者发生发热性中性粒细胞减少症及

菌血症等严重并发症的风险；Li 等[37]在肾母细胞瘤患儿

中建立了具有强泛化性的机器学习模型，该模型可预测

化疗诱发的骨髓 ADRs 风险。总体而言，机器学习能够

捕获动态时序变化的数据，推动骨髓 ADRs 从被动的周

期性监测，转向基于早期预测和个体化风险分层的主动

预警。

2.5　其他器官ADRs预测

机器学习在 ADRs 预测中的应用正持续扩展，已从

特定器官深入到全身多系统及特殊临床场景，显著提

升了临床对药物安全风险的预测与管控能力。例如

Magnuson 等[38]采用逻辑回归算法建立的癌症老化与研

究小组-乳腺癌评分系统，可根据肝功能指标、血红蛋白

水平等8个临床变量对乳腺癌老年患者全身多器官化疗

毒性风险进行分层；另一项研究也发现，随机森林和

XGBoost 模型能高效预测结直肠癌患者化疗诱导的多

种 ADRs（涉及骨髓、胃肠道、神经系统），这些模型的应

用实现了跨器官 ADRs 风险的综合评估[39]。

另外，在神经系统 ADRs 预测研究中，Cui 等[40]基于

临床常规指标（如淋巴细胞计数等），采用 L1正则化逻

辑回归算法建立了丙戊酸钠致药物性运动障碍的临床

预测模型，该模型具备良好的区分能力与校准能力

（AUROC 为 0.77，布莱尔评分小于 0.25），可有效识别中

高风险人群，为神经系统 ADRs 的临床预警提供了可靠

工具。在皮肤 ADRs 方面，Cho 等[41]研究发现，恶性肿瘤

患者的临床特征与免疫检查点抑制剂所致皮肤不良反

应发生率存在显著关联，进而该研究团队利用逻辑回

归、弹性网络等算法建立了皮肤 ADRs 预测模型。

总体而言，机器学习正在全面增强药物安全性评估

的能力，为其在临床场景中的实时预警和精准风险管理

提供了坚实技术基础。

3　机器学习在ADRs预测中的局限性

机器学习虽然在 ADRs 预测领域表现出巨大的应用

潜力，但是在临床数据质量控制、性能评价以及临床转

化等关键维度上仍存在诸多局限。

3.1　临床数据质量控制不足

医疗数据标准化是机器学习模型构建及后续应用

的核心，然而真实世界数据普遍存在数据量大、异质性

强等问题，如何实现多模态数据的有效融合，提取兼具

生物学意义和临床意义的特征，是当前需要突破的难

点。目前，我国临床场景下的电子病历系统尚未形成统

一的数据架构和术语规范，不同医疗机构之间普遍存在

“数据孤岛”现象。因此，大规模、高质量、多中心数据集

的构建仍存在一定难度，这制约了机器学习在 ADRs 预

测领域的开发，也限制了模型的泛化能力。

3.2　模型性能评价标准缺失

目前，机器学习模型的性能评价尚未形成统一标

准。虽然《个体预后或诊断的多因素预测模型透明报

告》的发布提高了预测模型报告的全面性和透明性，但

是研究人员在实际建模过程中仍未完全遵循该报告提

出的规范[42]。这使得对不同研究者开发的 ADRs 预测模

型进行客观、有效的性能评价变得困难。

3.3　模型可解释性不足与临床转化困难

机器学习模型具有“黑箱”特性，这限制了其临床转

化和推广。虽然沙普利可加性解释、局部可解释模型无

关解释等可解释技术逐步完善，但是仍无法充分揭示复

杂模型中的内在决策逻辑。另外，监管与伦理的严格约

束、安全法规对患者隐私的保护也增加了模型的临床转

化难度。因此，如何将机器学习模型嵌入现有临床工作

流程中，实现医院信息系统和实验室系统的有效交互，

是机器学习模型临床转化的一大难题。

4　结语与展望

算法的快速发展推动了机器学习在 ADRs（如 AKI、

DILI 等）预测领域的发展，这一趋势与国家政策倡导的

发展方向十分契合。国家卫生健康委员会发布的《卫生

健康行业人工智能应用场景参考指引》指出，应持续深

化人工智能与机器学习在医疗健康服务领域的应用[43]，

该指引为机器学习在 ADRs 预测中的落地提供了明确的

政策支持。目前，机器学习在 ADRs 预测中的研究重点

逐渐从追求算法性能转向与临床实际相适应，以及如何

实现预测模型的临床转化。如牛津大学、西湖大学和腾

讯天衍研究中心联合研发的 DrugGPT 系统，整合了

Drugs.com、英国国家医疗服务体系与 PubMed 三大权威

知识库，实现了对 ADRs 的高精度识别和关联分析，该系

统的预测准确率显著优于 GPT-4 和 ChatGPT 等通用

模型[44]。

未来，机器学习在 ADRs 预测领域的发展趋势应遵

循“技术-验证-整合”途径，系统性地推动模型落地。（1）

在技术层面，真实世界数据的质量直接决定了预测模型

性能的上限，因此研究者应构建标准化的数据体系与多

中心合作模式。具体来说，研究者应在国家相应标准的

框架下，探索构建“数据不动模型动”的虚拟协作网络，

从根本上破解“数据孤岛”难题。同时，研究者可利用

XAI 等技术，通过提供明确的风险决策依据，提升医护

人员对 ADRs 预测模型结果的认可度。另外，药师的角

色也至关重要，其需负责对 ADRs 预测模型输出的风险

信号进行专业解读，并依据患者具体情况实现个体化用

药监测。（2）在验证层面，研究重点应逐渐从追求算法性

能转向与临床实际相适应，推动 ADRs 预测模型从单中
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心、回顾性开发转向多中心、前瞻性验证，最终通过干预

性研究证实 ADRs 预测模型的可行性，这也是 ADRs 预

测模型获得临床认可与监管批准的必经之路。（3）在整

合层面，机器学习不再局限于风险评分，而是将 ADRs 预

测模型与医院信息系统、电子病历等相结合，推动药物

安全监测向智能化、个体化方向转型。

综上所述，机器学习凭借其强大的数据处理与特征

挖掘能力，在肾脏、肝脏等多器官 ADRs 预测中成效显

著，为药物安全监测提供了新路径。
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