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Research progress on the mechanism of traditional Chinese medicine regulating metabolic reprogramming
to improve breast cancer

ZHANG Zhenyu'?,CHEN Weixia', FENG Bo', LI Jilei', WANG Sizhe’,ZHU Meng’, MA Chunzheng' (1. Dept. of
Oncology, Henan Provincial Hospital of Chinese Medicine/the Second Affiliated Hospital of Henan University of
Chinese Medicine, Zhengzhou 450002, China; 2. The Second Clinical Medical College, Henan University of
Chinese Medicine, Zhengzhou 450046, China)

ABSTRACT Metabolic reprogramming, as one of the core hallmarks of malignant tumors, plays a key role in the occurrence,
development and treatment of breast cancer (BC). Abnormal changes in glucose metabolism, amino acid metabolism, lipid
metabolism, as well as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways significantly
influence the pathogenesis and progression of BC. Studies have shown that various active components of traditional Chinese
medicine (TCM) (such as berberine, matrine, quercetin, curcumin, etc.) and their compound formulations (e.g. Xihuang pill,
Danzhi xiaoyao powder, Yanghe decoction, etc.) can inhibit the proliferation and migration of BC cells and induce apoptosis by
regulating key metabolic pathways such as glycolysis, lipid synthesis, and amino acid metabolism. TCM demonstrates multi-target
and holistic regulatory advantages in intervening in BC metabolic reprogramming, showing significant potential in modulating key
molecules like hypoxia inducible factor-la, hexokinase-2, pyruvate kinase M2, lactate dehydrogenase A, glucose transporter-1,
fatty acid synthase, and signaling pathways such as AKT/mTOR. However, current researches still focus predominantly on glucose
metabolism, with insufficient mechanistic studies on lipid metabolism, amino acid metabolism, the TCA cycle, and OXPHOS. The
precise targets, molecular mechanisms, and clinical translation value of these interventions require further validation and
clarification through more high-quality experimental studies and clinical trials.
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T B4 glucose : #i 44 ; GLUT-1: #j 45 B8 141 ; B -integrin:: B,
HA 2 TWIST : Twisth T2 [T HK2 : O HMER2 ; FAK : 56 45 B ;
SCD1 : i [l Tk 4 b A 5 100 F1T 1 ; PPP « W HR IOBE 12242 ; fatty acids: Jig [y
1% ; lipid droplets: 774 ; R6P : 5-BBRAZ B ; GOP ; 6-Bi B i 24 ; glycoly-
sis: FHIEA s AKT - 25 BB ; FAS : BEAER & il s HER2 : A A KN
F3ZAR2; F6P : 6- i T ¥ ; acetate : Z,2 ; malonyl-CoA : TN LA ;
nucleotide : 7% 1 1% ; mTOR : Wili 7L s 4 5 M1 %5 25 #0028 (1 ; PFK 1 B R SR
W15 p53 : R 38 M p53; ACC: L BRAH A R IL R ; ACSS2 : Z Tkl
A A B2 F1,6BP: 1, 6- MR AL 0 ; acetyl-CoA : ZFEHfififFA ; HIF-
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PR R FERE AR A 8 S, 3 G P Il - HK2 |
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FIARIAE 7, 400 b P g 2k A2, 308 2k L 1 40 P9 9%
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HEAR AR

43P R 2G4 3E T B — R R R 2k
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HETT, HIX —A FHAS 52 28 5 i ol i 775 A 52 00 5 LR 9
FMH A28 T AL I B OB AR R Th e, S BN
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7 5t e — b R YR T S P %) A R 2R T A
4y, BAT AR PR 25 BRAE A . Jin S0V 5E R, 5
SEWIRENS T 94 TNBC 40 HIF-1a FOZE35 , i RDREBE A
R AR [R]85 AR AL B R AL 15 PE R85 ROS LR,
AR BC 4l T,

B 7 LSS 22 v o 200 i e A0 5 P 43 . Wang
SOV IR BEE T LA AT LA A S ) B R A A AR
s LDHA AR5 BC AL AR K . KRR 2
— R 2 A R 2Y |, Chai 257 % B, H 2 R BUY)
A 3E A 2 AR I A OC B GLUT-1 . HK2 .LDHA FI
PKM2 135K, K454 BC IIFEH]

Zi LA, v 2595 M 3 7E BC AR g B v &
VB R . AR, AW B i
J5 T AR PR RIS S R T M A A Ao A T
SR RF 6 T 1 3% M (G0 HK2 . PFK1 . PKM2 %5 DL} {5538
% (0 HIF-1o 5 530 B% 45 ) S0k T 1 BC 1 & K o
i 3 g AR ] BC A9AE A= s IS 0 /N BE R L ik T
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R KT, 2 A0 A e A P . PG 0 A PR S
EVENEESINGSSYNE A8 2 LE2T U N2 = S 2
MR, AR ALET TR R W], PHEE i A RE i T A
BC #fiJifd T Warburg {0 W #H ¢ 2 I GLUT-1,HK2 .PKM2
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Zx bk, B PR I I B e e A
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YUARE R o G I 3 R BH Rz mT A a0 o A e At O e
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] R B A R O 34, R R A5 il BC 200 fry 34 B B
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TN AR BRI T 25E I R M 2R
BC 35 1 gt B2 A PR P VR T B AE R P 235 2 T 4TS
AN (D) FEAR2E N S5 A% A I 6 SCHE Ty 1T, A= Pk
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JIG BT 12 Al 1 B BRI AT TR DGR . AMRZR I 259 K&
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525 ChnPHEE @ #LSE ) A] BE S5 M s Ak R B A e

FRBAH G o () TEFEPE 2 RLAR AR5 108 8% 5 T, HIF- Lo

{5 538 L R 45 Warburg BORZ OAX AL, 218 2 v 2476
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